Computational Approaches to Design Cytotoxic Lymphocyte (CTL) Epitope-Based Vaccine Targeting the Spike (S) Protein of SARS-CoV-2

Authors

  • Mehvish Mumtaz Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Punjab, Pakistan.
  • Nazim Hussain Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Punjab, Pakistan.
  • Ayesha Aslam Department of Biochemistry, Faculty of Life Sciences, University of Okara, Punjab, Pakistan.
  • Hafiz Muhammad Husnain Azam Institute of Biotechnology, Faculty of Environmental and Natural Sciences, Brandenburg University of Technology Cottbus–Senftenberg, Universitätsplatz, Senftenberg, Germany.
  • Namra Ahmad Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Punjab, Pakistan.
  • Kainat Ramzan Department of Biochemistry, Faculty of Life Sciences, University of Okara, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i6.1476

Keywords:

Multiepitopes, SARS-CoV-2, cytotoxic lymphocyte (CTL), AAY Linker, Molecular Docking, pET-28b

Abstract

The ongoing global threat posed by SARS-CoV-2 necessitates the rapid development of effective vaccines. This study employed a computational pipeline to design a multi-epitope vaccine targeting the spike (S) glycoprotein of SARS-CoV-2. Cytotoxic T lymphocyte (CTL) epitopes were predicted using immunoinformatics tools and were screened based on their non-toxicity, immunogenicity, and antigenicity. High-affinity epitopes were sequentially linked via AAY linkers to construct a rationally designed vaccine candidate. The tertiary structure of the construct was modeled and evaluated for structural stability and desirable physicochemical properties. To assess immunogenic potential, molecular docking was performed with key immune receptors, including Toll-like receptor 3 (TLR3) and major histocompatibility complex class I (MHC-I), demonstrating strong and specific binding interactions. Furthermore, the vaccine gene was codon-optimized and in silico cloned into the pET-28b(+) expression vector, yielding a construct of 5476 base pairs. The collective in silico findings support the designed multi-epitope vaccine as a promising candidate capable of inducing robust and long-lasting cell-mediated immunity against SARS-CoV-2. Experimental validation is warranted to confirm these computational predictions.

Downloads

Download data is not yet available.

References

Ahmed, S., Dávila, J. D., Allen, A., Haklay, M. (MUKI), Tacoli, C., & Fèvre, E. M. (2019). Does urbanization make emergence of zoonosis more likely? Evidence, myths and gaps. Environment and Urbanization, 31(2), 443–460.

https://doi.org/10.1177/0956247819866124

Paules, C. I., Marston, H. D., & Fauci, A. S. (2020). Coronavirus Infections—More Than Just the Common Cold. JAMA, 323(8).

https://doi.org/10.1001/jama.2020.0757

Abdeen, Y., Kaako, A., Alnabulsi, M., Okeh, A., Meng, W., & Miller, R. (2021). The prognostic effect of brain natriuretic peptide levels on outcomes of hospitalized patients with COVID-19. Avicenna Journal of Medicine, 11(01), 20–26.

https://doi.org/10.4103/ajm.ajm_169_20

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382(8).

https://doi.org/10.1056/nejmoa2001017

Bogoch, I. I., Watts, A., Thomas-Bachli, A., Huber, C., Kraemer, M. U. G., & Khan, K. (2020). Pneumonia of Unknown Etiology in Wuhan, China: Potential for International Spread Via Commercial Air Travel. Journal of Travel Medicine, 27(2).

https://doi.org/10.1093/jtm/taaa008

Elfiky, A. A. (2020). SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective. Journal of Biomolecular Structure and Dynamics, 39(9), 1–15.

https://doi.org/10.1080/07391102.2020.1761882

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., & Chen, J. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574.

https://doi.org/10.1016/s0140-6736(20)30251-8

Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. M. E., & Fouchier, R. A. M. (2012). Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. New England Journal of Medicine, 367(19), 1814–1820.

https://doi.org/10.1056/nejmoa1211721

Boopathi, S., Poma, A. B., & Kolandaivel, P. (2020). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics, 39(9), 1–10.

https://doi.org/10.1080/07391102.2020.1758788

Gupta, M. K., Vemula, S., Donde, R., Gouda, G., Behera, L., & Vadde, R. (2020). In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. Journal of Biomolecular Structure and Dynamics, 39(7), 1–11.

https://doi.org/10.1080/07391102.2020.1751300

Hasan, A., Paray, B. A., Hussain, A., Qadir, F. A., Attar, F., Aziz, F. M., Sharifi, M., Derakhshankhah, H., Rasti, B., Mehrabi, M., Shahpasand, K., Saboury, A. A., & Falahati, M. (2020). A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. Journal of Biomolecular Structure and Dynamics, 39(8), 1–9.

https://doi.org/10.1080/07391102.2020.1754293

Khan, R. J., Jha, R., Amera, G. M., Jain, M., Singh, E., Pathak, A., ... & Singh, A. (2020). Targeting novel coronavirus 2019: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 20-O-ribose methyltransferase. J Biomol Struct Dyn, 39(8), 2679-2692.

Khan, S. A., Zia, K., Ashraf, S., Uddin, R., & Ul-Haq, Z. (2020). Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure and Dynamics, 39(7), 1–10.

https://doi.org/10.1080/07391102.2020.1751298

Chan, J. F.-W., Kok, K.-H., Zhu, Z., Chu, H., To, K. K.-W., Yuan, S., & Yuen, K.-Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections, 9(1), 221–236.

https://doi.org/10.1080/22221751.2020.1719902

Xia, S., Zhu, Y., Liu, M., Lan, Q., Xu, W., Wu, Y., Ying, T., Liu, S., Shi, Z., Jiang, S., & Lu, L. (2020). Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cellular & Molecular Immunology, 17(7), 1–3.

https://doi.org/10.1038/s41423-020-0374-2

Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(215–220).

https://doi.org/10.1038/s41586-020-2180-5

Zhu, X., Liu, Q., Du, L., Lu, L., & Jiang, S. (2013). Receptor-binding domain as a target for developing SARS vaccines. Journal of Thoracic Disease, 5(Suppl 2), S142–S148.

https://doi.org/10.3978/j.issn.2072-1439.2013.06.06

Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., ... & Qi, J. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181(4), 894-904.

https://www.cell.com/cell/fulltext/S0092-8674(20)30338-X?rss=yes&fbclid=IwAR3OYcdO4wS-HZUjA0vzyIk9b6rkp0kTxX4bWXlM0tHRFSS1s-k3WQD70bw

Choudhury, A., & Mukherjee, S. (2020). In silico studies on the comparative characterization of the interactions of SARS‐CoV‐2 spike glycoprotein with ACE‐2 receptor homologs and human TLRs. Journal of Medical Virology, 92(10).

https://doi.org/10.1002/jmv.25987

Zhou, Z., Ren, L., Zhang, L., Zhong, J., Xiao, Y., Jia, Z., Guo, L., Yang, J., Wang, C., Jiang, S., Yang, D., Zhang, G., Li, H., Chen, F., Xu, Y., Chen, M., Gao, Z., Yang, J., Dong, J., & Liu, B. (2020). Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients. Cell Host & Microbe, 27(6), 883-890.e2.

https://doi.org/10.1016/j.chom.2020.04.017

Ziegler, C., Allon, S. J., Nyquist, S. K., Mbano, I., Miao, V. N., Cao, Y., Yousif, A. S., Bals, J., Hauser, B. M., Feldman, J., Muus, C., Wadsworth II, M. H., Kazer, S., Hughes, T. K., Doran, B., Gatter, G. J., Vukovic, M., Tzouanas, C. N., Taliaferro, F., & Guo, Z. (2020). SARS-CoV-2 Receptor ACE2 is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Enriched in Specific Cell Subsets Across Tissues. SSRN Electronic Journal, 181(5).

https://doi.org/10.2139/ssrn.3555145

Brandao, S. C. S., Ramos, J. D. O. X., Dompieri, L. T., Godoi, E. T. A. M., Figueiredo, J. L., Sarinho, E. S. C., ... & Aikawa, M. (2021). Is Toll-like receptor 4 involved in the severity of COVID-19 pathology in patients with cardiometabolic comorbidities?. Cytokine & Growth Factor Reviews, 58, 102-110.

https://doi.org/10.1016/j.cytogfr.2020.09.002

Aboudounya, M. M., & Heads, R. J. (2021). COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediators of Inflammation, 2021, 1–18.

https://doi.org/10.1155/2021/8874339

Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., ... & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265-269.

https://doi.org/10.1038/s41586-020-2008-3

Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the sars-cov-2 spike glycoprotein. Cell, 181(2), 281–292.

https://doi.org/10.1016/j.cell.2020.02.058

Bahrami, A. A., Payandeh, Z., Khalili, S., Zakeri, A., & Bandehpour, M. (2019). Immunoinformatics: In Silico Approaches and Computational Design of a Multi-epitope, Immunogenic Protein. International Reviews of Immunology, 38(6), 307–322.

https://doi.org/10.1080/08830185.2019.1657426

Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8(1).

https://doi.org/10.1186/1471-2105-8-424

Thiel, M., Caldwell, C. C., Kreth, S., Kuboki, S., Chen, P., Smith, P., Ohta, A., Lentsch, A. B., Lukashev, D., & Sitkovsky, M. V. (2007). Targeted Deletion of HIF-1α Gene in T Cells Prevents their Inhibition in Hypoxic Inflamed Tissues and Improves Septic Mice Survival. PLoS ONE, 2(9), e853.

https://doi.org/10.1371/journal.pone.0000853

Iwasaki, A., & Yang, Y. (2020). The potential danger of suboptimal antibody responses in COVID-19. Nature Reviews Immunology, 20(6).

https://doi.org/10.1038/s41577-020-0321-6

Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. (2015). Peptide toxicity prediction. Computational peptidology, 143-157.

Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1).

https://doi.org/10.1186/1471-2105-8-4

Calis, J. J. A., Maybeno, M., Greenbaum, J. A., Weiskopf, D., De Silva, A. D., Sette, A., Keşmir, C., & Peters, B. (2013). Properties of MHC Class I Presented Peptides That Enhance Immunogenicity. PLoS Computational Biology, 9(10), e1003266.

https://doi.org/10.1371/journal.pcbi.1003266

D’Angelo, S. P., Larkin, J., Sosman, J. A., Lebbé, C., Brady, B., Neyns, B., Schmidt, H., Hassel, J. C., Hodi, F. S., Lorigan, P., Savage, K. J., Miller, W. H., Mohr, P., Marquez-Rodas, I., Charles, J., Kaatz, M., Sznol, M., Weber, J. S., Shoushtari, A. N., & Ruisi, M. (2017). Efficacy and Safety of Nivolumab Alone or in Combination With Ipilimumab in Patients With Mucosal Melanoma: A Pooled Analysis. Journal of Clinical Oncology, 35(2), 226–235.

https://doi.org/10.1200/jco.2016.67.9258

Dhanda, S. K., Mahajan, S., Paul, S., Yan, Z., Kim, H., Jespersen, M. C., Jurtz, V., Andreatta, M., Greenbaum, J. A., Marcatili, P., Sette, A., Nielsen, M., & Peters, B. (2019). IEDB-AR: immune epitope database—analysis resource in 2019. Nucleic Acids Research, 47(W1), W502–W506.

https://doi.org/10.1093/nar/gkz452

Esmailnia, E., Amani, J., & Gargari, S. L. M. (2020). Identification of novel vaccine candidate against Salmonella enterica serovar Typhi by reverse vaccinology method and evaluation of its immunization. Genomics, 112(5), 3374–3381.

https://doi.org/10.1016/j.ygeno.2020.06.022

Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2014). The I-TASSER Suite: protein structure and function prediction. Nature Methods, 12(1), 7–8.

https://doi.org/10.1038/nmeth.3213

Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature Protocols, 12(2), 255–278.

https://doi.org/10.1038/nprot.2016.169

Behmard, E., Abdulabbas, H. T., Jasim, S. A., Najafipour, S., Ghasemian, A., Farjadfar, A., Barzegari, E., Kouhpayeh, A., & Abdolmaleki, P. (2022). Design of a novel multi-epitope vaccine candidate against hepatitis C virus using structural and nonstructural proteins: An immunoinformatics approach. PloS One, 17(8), e0272582–e0272582.

https://doi.org/10.1371/journal.pone.0272582

Skwarczynski, M., & Toth, I. (2016). Peptide-Based Synthetic Vaccines. ChemInform, 47(12), no-no.

https://doi.org/10.1002/chin.201612281

Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2020). Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. Viruses, 12(3), 254.

https://doi.org/10.3390/v12030254

Baruah, V., & Bose, S. (2020). Immunoinformatics‐aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019‐nCoV. Journal of Medical Virology, 92(5), 495–500.

https://doi.org/10.1002/jmv.25698

Bhattacharya, M., Sharma, A. R., Patra, P., Ghosh, P., Sharma, G., Patra, B. C., Lee, S., & Chakraborty, C. (2020). Development of epitope‐based peptide vaccine against novel coronavirus 2019 (SARS‐COV‐2): Immunoinformatics approach. Journal of Medical Virology, 92(6), 618–631.

https://doi.org/10.1002/jmv.25736

Kalita, P., Padhi, A. K., Zhang, K. Y. J., & Tripathi, T. (2020). Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microbial Pathogenesis, 145, 104236.

https://doi.org/10.1016/j.micpath.2020.104236

Lu, S. (2020). Timely development of vaccines against SARS-CoV-2. Emerging Microbes & Infections, 9(1), 542–544.

https://doi.org/10.1080/22221751.2020.1737580

Ojha, R., Nandani, R., & Prajapati, V. K. (2018). Contriving multiepitope subunit vaccine by exploiting structural and nonstructural viral proteins to prevent Epstein–Barr virus‐associated malignancy. Journal of Cellular Physiology, 234(5), 6437–6448.

https://doi.org/10.1002/jcp.27380

Ikram, A., Zaheer, T., Awan, F. M., Obaid, A., Naz, A., Hanif, R., Paracha, R. Z., Ali, A., Naveed, A. K., & Janjua, H. A. (2018). Exploring NS3/4A, NS5A and NS5B proteins to design conserved subunit multi-epitope vaccine against HCV utilizing immunoinformatics approaches. Scientific Reports, 8(1).

https://doi.org/10.1038/s41598-018-34254-5

Sah, R., Rodriguez-Morales, A. J., Jha, R., Chu, D. K. W., Gu, H., Peiris, M., Bastola, A., Lal, B. K., Ojha, H. C., Rabaan, A. A., Zambrano, L. I., Costello, A., Morita, K., Pandey, B. D., & Poon, L. L. M. (2020). Complete Genome Sequence of a 2019 Novel Coronavirus (SARS-CoV-2) Strain Isolated in Nepal. Microbiology Resource Announcements, 9(11).

https://doi.org/10.1128/MRA.00169-20

Bibi, S., Ullah, I., Zhu, B., Adnan, M., Liaqat, R., Kong, W.-B., & Niu, S. (2021). In silico analysis of epitope-based vaccine candidate against tuberculosis using reverse vaccinology. Scientific Reports, 11(1).

https://doi.org/10.1038/s41598-020-80899-6

Abraham Peele, K., Srihansa, T., Krupanidhi, S., Vijaya Sai, A., & Venkateswarulu, T. C. (2020). Design of multi-epitope vaccine candidate against SARS-CoV-2: a in-silico study. Journal of Biomolecular Structure and Dynamics, 39(10), 1–9.

https://doi.org/10.1080/07391102.2020.1770127

Dong, R., Chu, Z., Yu, F., & Zha, Y. (2020). Contriving Multi-Epitope Subunit of Vaccine for COVID-19: Immunoinformatics Approaches. Frontiers in Immunology, 11.

https://doi.org/10.3389/fimmu.2020.01784

Patten, P. A., Howard, R. J., & Stemmer, W. P. (1997). Applications of DNA shuffling to pharmaceuticals and vaccines. Current Opinion in Biotechnology, 8(6), 724-733.

https://doi.org/10.1016/S0958-1669(97)80127-9

Hajizade, A., Firouz, Amani, J., Arpanaei, A., & Salmanian, A. H. (2016). Design and in silico analysis of pentavalent chimeric antigen against three enteropathogenic bacteria: enterotoxigenic E. coli, enterohemorragic E. coli and Shigella. Bioscience Biotechnology Research Communications, 9(2), 225–239.

https://doi.org/10.21786/bbrc/9.1/9

Downloads

Published

2025-06-16

How to Cite

Mumtaz, M., Hussain, N., Aslam, A., Husnain Azam, H. M., Ahmad, N., & Ramzan, K. (2025). Computational Approaches to Design Cytotoxic Lymphocyte (CTL) Epitope-Based Vaccine Targeting the Spike (S) Protein of SARS-CoV-2. Indus Journal of Bioscience Research, 3(6), 151-160. https://doi.org/10.70749/ijbr.v3i6.1476