Effect of Foliar by Applied Moringa Leaf Extract on Tomato Growth Performance under Drought Stress

Authors

  • Rida Batool Department of Botany, University of Agriculture Faisalabad, Pakistan
  • Muqaddas Farzand Department of Botany, University of Agriculture Faisalabad, Pakistan
  • Hazib Ali College of Agriculture, Guizhou University, China
  • Adeela Ashraf Department of Botany, University of Agriculture Faisalabad, Pakistan
  • Muhammad Awais Department of Botany, University of Agriculture Faisalabad, Pakistan
  • Fiza Khalid Department of Botany, University of Agriculture Faisalabad, Pakistan

DOI:

https://doi.org/10.70749/ijbr.v3i6.1629

Keywords:

Foliar spray, Drought Stress, Plant Yield, Moringa leaf extract (MLE), Tomato growth

Abstract

Among stresses, drought is a fatal that causes threats to crops. Drought stress is a significant constraining element in tomato manufacturing, affecting plant development, yield, and fruit excellence. Therefore, scientists have been utilizing numerous tactics to mitigate the damaging consequences of water deficit. Plant growth promoters such as extract from moringa leaves are often utilized exogenously to vegetation to promote their resistance to numerous abiotic stresses. Three varying dosages of extract from moringa leaves 0%, 3% as well 6% were sprayed to the tomato (Solanum lycopercium) crop. The experiment was CRD designed with three replications. Drought (45% FC) was applied to determine the toxic impact on growth variables and the physiology of tomato. The data noted during the study was assessed for variance by utilizing CO_ STAT software. Results demonstrated that drought diminished all growth metrics and ion contents. During drought conditions, moringa-treated plants had improved growth factors and physiochemical attributes such as soluble sugar, flavonoids, anthocyanin, ascorbic acid, chlorophyll, and ion contents. MLE application increased proportionate amounts of proline and water, suggesting improved water retention and stress tolerance. Increased antioxidant enzyme activity in treated plants also indicated a bolstered defense mechanism against drought-induced oxidative stress. Foliar application of Moringa leaf extract demonstrates promising potential as a sustainable agronomic method to enhance tomato expansion and stress resilience under drought conditions. The 6% moringa leaf extract had a greater impact on all measured variables. It was stated that Leaf extract from moringa can be utilized as a development promoter because this can optimize the morpho-physiological attributes as well as biochemical features of tomato by lessening the destructive effects of drought. It was stated that extract from moringa leaves can be utilized as a growth-promoting agent because it can optimize the morpho-physiological attributes as well as biochemical features of tomato by lessening the destructive effects of drought.

Downloads

Download data is not yet available.

References

Abbasi, S., Sadeghi, A., & Safaie, N. (2020). Streptomyces alleviate drought stress in tomato plants and modulate the expression of transcription factors ERF1 and WRKY70 genes. Scientia Horticulturae, 265, 109206.

https://doi.org/10.1016/j.scienta.2020.109206

Ahmadi, T., Shabani, L., & Sabzalian, M. R. (2020). LED light mediates phenolic accumulation and enhances antioxidant activity in Melissa officinalis L. under drought stress condition. Protoplasma, 257, 1231-1242.

https://doi.org/10.1007/s00709-020-01501-4

Ahmed, U., Rao, M. J., Qi, C., Xie, Q., Noushahi, H. A., Yaseen, M., Shi, X., & Zheng, B. (2021). Expression profiling of flavonoid biosynthesis genes and secondary metabolites accumulation in populus under drought stress. Molecules, 26(18), 5546.

Akhtar, M. N., Akhtar, M. W., Rahi, A. A., & ul Haq, T. (2023). Enhancing Water Use Efficiency by Using Potassium-Efficient Cotton Cultivars Based on Morphological and Biochemical Characteristic. In Best Crop Management and Processing Practices for Sustainable Cotton Production. IntechOpen.

https://doi.org/10.5772/intechopen.112606

Akhtar, T. (2018). Influence of Multiple Irrigation Timings and Humic Acid Application on Yield and Yield Components of Mungbean, Water Use Efficiency and some Soil Properties under Arid Land Condition KING ABDULAZIZ UNIVERSITY JEDDAH].

Alayafi, A. A. M. (2020). Exogenous ascorbic acid induces systemic heat stress tolerance in tomato seedlings: transcriptional regulation mechanism. Environmental Science and Pollution Research, 27(16), 19186-19199.

https://doi.org/10.1007/s11356-019-06195-7

Alghamdi, S. A., Alharby, H. F., Bamagoos, A. A., Zaki, S.-n. S., Abu El-Hassan, A. M., Desoky, E.-S. M., Mohamed, I. A., & Rady, M. M. (2022). Rebalancing nutrients, reinforcing antioxidant and osmoregulatory capacity, and improving yield quality in drought-stressed Phaseolus vulgaris by foliar application of a bee-honey solution. Plants, 12(1), 63.

Amira, M., & Qados, A. (2014). Effect of ascorbic acid antioxidant on soybean (Glycine max L.) plants grown under water stress conditions. Int J Adv Res Biol Sci, 1(6), 189-205.

Anjum, S., Hamid, A., Ghafoor, A., Naz, R. M. M., Khaqan, K., Aqeel, M., & Khan, M. I. (2020). 75. Genetic divergence for seedling and qualitative traits of tomato (Solanum lycopersicum) germplasm. Pure and Applied Biology (PAB), 9(1), 776-789.

https://doi.org/10.19045/bspab.2020.90084

Anwar, S., Khalilzadeh, R., Khan, S., Bashir, R., Pirzad, A., & Malik, A. (2021). Mitigation of drought stress and yield improvement in wheat by zinc foliar spray relates to enhanced water use efficiency and zinc contents. International Journal of Plant Production, 15, 377-389.

Arora, N., Bhardwaj, R., Sharma, P., & Arora, H. K. (2008). Effects of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiologiae Plantarum, 30, 833-839.

https://doi.org/10.1007/s11738-008-0188-9

Aslam, M., Sultana, B., Anwar, F., & Munir, H. (2016). Foliar spray of selected plant growth regulators affected the biochemical and antioxidant attributes of spinach in a field experiment. Turkish Journal of Agriculture and Forestry, 40(2), 136-145.

https://doi.org/10.3906/tar-1412-56

Bailey, G. A. (1996). Counter-Reformation symbolism and allegory in Mughal painting. Harvard University.

Bakry, A., Abdelraouf, R., Ahmed, M., & El-Karamany, M. (2012). Effect of drought stress and ascorbic acid foliar application on productivity and irrigation water use efficiency of wheat under newly reclaimed sandy soil.

Batool, S., Khan, S., & Basra, S. (2020). Foliar application of moringa leaf extract improves the growth of moringa seedlings in winter. South African Journal of Botany, 129, 347-353.

https://doi.org/10.1016/j.sajb.2019.08.040

Blunden, G., Jenkins, T., & Liu, Y.-W. (1996). Enhanced leaf chlorophyll levels in plants treated with seaweed extract. Journal of applied phycology, 8, 535-543.

Chapagain, B., & Wiesman, Z. (2004). Effect of Nutri-Vant-PeaK foliar spray on plant development, yield, and fruit quality in greenhouse tomatoes. Scientia Horticulturae, 102(2), 177-188.

https://doi.org/10.1016/j.scienta.2003.12.010

Dalal, M., Dani, R. G., & Kumar, P. A. (2006). Current trends in the genetic engineering of vegetable crops. Scientia Horticulturae, 107(3), 215-225.

Faizan, M., & Hayat, S. (2019). Effect of foliar spray of ZnO-NPs on the physiological parameters and antioxidant systems of Lycopersicon esculentum. Pol. J. Nat. Sci, 34(6), 87-105.

Fang, S., Gao, K., Hu, W., Wang, S., Chen, B., & Zhou, Z. (2019). Foliar and seed application of plant growth regulators affects cotton yield by altering leaf physiology and floral bud carbohydrate accumulation. Field Crops Research, 231, 105-114.

https://doi.org/10.1016/j.fcr.2018.11.012

Farooq, B., & Koul, B. (2020). Comparative analysis of the antioxidant, antibacterial and plant growth promoting potential of five Indian varieties of Moringa oleifera L. South African Journal of Botany, 129, 47-55.

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. (2009). Plant drought stress: effects, mechanisms and management. In Sustainable agriculture (pp. 153-188). Springer.

https://doi.org/10.1007/978-90-481-2666-8_12

Feyissa, B. A., Arshad, M., Gruber, M. Y., Kohalmi, S. E., & Hannoufa, A. (2019). The interplay between miR156/SPL13 and DFR/WD40–1 regulate drought tolerance in alfalfa. BMC Plant Biology, 19, 1-19.

Galmes, J., Conesa, M. A., Ochogavía, J. M., Perdomo, J. A., Francis, D. M., Ribas‐Carbó, M., Save, R., Flexas, J., Medrano, H., & Cifre, J. (2011). Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant, Cell & Environment, 34(2), 245-260.

Gao, H., Yu, W., Yang, X., Liang, J., Sun, X., Sun, M., Xiao, Y., & Peng, F. (2022). Silicon enhances the drought resistance of peach seedlings by regulating hormone, amino acid, and sugar metabolism. BMC Plant Biology, 22(1), 422.

https://doi.org/10.1186/s12870-022-03785-5

Ghazijahani, N., Hadavi, E., & Jeong, B. R. (2014). Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.). Frontiers in Plant Science, 5, 573.

Ghorbanli, M., FARZAMI, S. M., & Norozi, F. (2010). Study of drought and ascorbic acid effect on two cultivars of Brassica napus and Response of Glycin max var TMS to treated plant extracts.

Gondal, A. S., Rauf, A., & Naz, F. (2019). Anastomosis Groups of Rhizoctonia solani associated with tomato foot rot in Pothohar Region of Pakistan. Scientific Reports, 9(1), 3910.

https://doi.org/10.1038/s41598-019-40043-5

Guler, N. S., & Pehlivan, N. (2016). Exogenous low-dose hydrogen peroxide enhances drought tolerance of soybean (Glycine max L.) through inducing antioxidant system. Acta Biologica Hungarica, 67(2), 169-183.

https://doi.org/10.1556/018.67.2016.2.5

Huang, C., Liao, J., Huang, W., & Qin, N. (2022). Salicylic acid protects sweet potato seedlings from drought stress by mediating abscisic acid-related gene expression and enhancing the antioxidant defense system. International Journal of Molecular Sciences, 23(23), 14819.

Iftikhar, H., Arshad, A., Tamreen, Y., Shahid, S., Firdous, M., Siddiqui, I., Fatima, S., Fatima, R., Fatima, H., & Ali, Q. (2025). Influence of Exogenous Ascorbic Acid Levels on Growth and Physiological Responses of Wheat (Triticum aestivum) Exposed to Drought Stress. Indus Journal of Bioscience Research, 3(4), 424-437.

Ikram, N. A., Ghaffar, A., Khan, A. A., Nawaz, F., & Hussain, A. (2025). Foliar iodine application: A strategy for tomato biofortification and yield optimization. Journal of Plant nutrition, 48(3), 540-556.

https://doi.org/10.1080/01904167.2024.2407483

Jameel, J., Anwar, T., Siddiqi, E. H., & Alomrani, S. O. (2024). Alleviation of NaCl stress in tomato varieties by promoting morpho-physiological attributes and biochemical characters. Scientia Horticulturae, 323, 112496.

Jangid, K. K., & Dwivedi, P. (2016). Physiological responses of drought stress in tomato: a review. International Journal of Agriculture, Environment and Biotechnology, 9(1), 53-61.

https://doi.org/10.5958/2230-732x.2016.00009.7

Kamanga, R., Mbega, E., & Ndakidemi, P. (2018). Drought tolerance mechanisms in plants: physiological responses associated with water deficit stress in Solanum lycopersicum.

Kamanga, R. M., & Ndakidemi, P. A. (2022). Cultivation of Tomato under Dehydration and Salinity Stress: Unravelling the Physiology and Alternative Tolerance Options. In Tomato-From Cultivation to Processing Technology. IntechOpen.

https://doi.org/10.5772/intechopen.108172

Kaya, C., & Shabala, S. (2023). Sodium hydrosulfide-mediated upregulation of nitrogen metabolism improves drought stress tolerance in pepper plants. Environmental and Experimental Botany, 209, 105305.

Khadr, S., El-Hamamsy, S., El-khamissi, H., & Saad, Z. (2021). The effect of ascorbic acid treatment on wheat (Triticum aestivum L.) seedlings under drought stress. Egypt. J. of Appl. Sci., 36(1), 30-42.

https://doi.org/10.21608/ejas.2021.152334

Khan, S. K. (2016). Growth and Yield of Wheat (Triticum aestivum L.) as Affected by Mulching and Irrigation University of Rajshahi].

Laane, H.-M. (2018). The effects of foliar sprays with different silicon compounds. Plants, 7(2), 45.

https://doi.org/10.3390/plants7020045

Lee, D., & Kennedy, C. (2020). Tomato Love! In.

Leone, A., Spada, A., Battezzati, A., Schiraldi, A., Aristil, J., & Bertoli, S. (2015). Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. International Journal of Molecular Sciences, 16(6), 12791-12835.

Liu, Y., Huang, W., Xian, Z., Hu, N., Lin, D., Ren, H., Chen, J., Su, D., & Li, Z. (2017). Overexpression of SlGRAS40 in tomato enhances tolerance to abiotic stresses and influences auxin and gibberellin signaling. Frontiers in Plant Science, 8, 1659.

https://doi.org/10.3389/fpls.2017.01659

Maggio, A., De Pascale, S., Ruggiero, C., & Barbieri, G. (2005). Physiological response of field-grown cabbage to salinity and drought stress. European journal of agronomy, 23(1), 57-67.

Malik, S., & Ashraf, M. (2012). Exogenous application of ascorbic acid stimulates growth and photosynthesis of wheat (Triticum aestivum L.) under drought. Soil & Environment, 31(1).

Mannan, M. A., Tithi, M. A., Islam, M. R., Al Mamun, M. A., Mia, S., Rahman, M. Z., Awad, M. F., ElSayed, A. I., Mansour, E., & Hossain, M. S. (2022). Soil and foliar applications of zinc sulfate and iron sulfate alleviate the destructive impacts of drought stress in wheat. Cereal Research Communications, 50(4), 1279-1289.

https://doi.org/10.1007/s42976-022-00262-5

Miniatures, m. (2008). Life and conditions of the people during mughal period: a study based on rajasthani aligarh muslim university aligarh (india].

Morales-Contreras, B. E., Rosas-Flores, W., Contreras-Esquivel, J. C., Wicker, L., & Morales-Castro, J. (2018). Pectin from Husk Tomato (Physalis ixocarpa Brot.): Rheological behavior at different extraction conditions. Carbohydrate polymers, 179, 282-289.

Mphahlele, G. H., Kena, M. A., & Manyevere, A. (2020). Evaluation of aggressiveness of Alternaria solani isolates to commercial tomato cultivars. Archives of Phytopathology and Plant Protection, 53(11-12), 570-580.

https://doi.org/10.1080/03235408.2020.1770462

Mukimuddin, M. S. H. (2024). Performance of wheat (Triticum aestivum L.) under foliar application of different nutrients Doctoral dissertation, Mahatma Phule Krishi Vidyapeeth].

Niu, J., Liu, C., Huang, M., Liu, K., & Yan, D. (2021). Effects of foliar fertilization: a review of current status and future perspectives. Journal of Soil Science and Plant Nutrition, 21, 104-118.

Ors, S., & Suarez, D. L. (2017). Spinach biomass yield and physiological response to interactive salinity and water stress. Agricultural water management, 190, 31-41.

https://doi.org/10.1016/j.agwat.2017.05.003

Pal, D., Bhardwaj, S., Sharma, D., Kumari, S., Patial, M., & SHARMA, P. (2015). Assessment of genetic diversity and validating rust resistance gene sources using molecular markers in wheat (Triticum aestivum L.). SABRAO Journal of Breeding & Genetics, 47(2).

Pantoja-Benavides, A. D., Garces-Varon, G., & Restrepo-Díaz, H. (2021). Foliar growth regulator sprays induced tolerance to combined heat stress by enhancing physiological and biochemical responses in rice. Frontiers in Plant Science, 12, 702892.

Pourghasemian, N., Moradi, R., Naghizadeh, M., & Landberg, T. (2020). Mitigating drought stress in sesame by foliar application of salicylic acid, beeswax waste and licorice extract. Agricultural water management, 231, 105997.

https://doi.org/10.1016/j.agwat.2019.105997

Pratap, M., Reddy, S. A., & Reddy, Y. (2004). Effect of foliar application of FeSO4 and ZnSO4 on flower production and anthocyanin content of gladiolus spike. Journal of Ornamental Horticulture, 7(2), 159-163.

Qi, L., OUYANG, W., Yinhong, Z., Yang, Y., Kailei, T., & Guanghui, D. (2025). Effects of foliar treatment of ascorbic acid on industrial hemp seedlings under drought stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 53(1), 14300-14300.

https://doi.org/10.15835/nbha53114300

Rady, M. M., Desoky, E.-S. M., Ahmed, S. M., Majrashi, A., Ali, E. F., Arnaout, S. M., & Selem, E. (2021). Foliar nourishment with nano-selenium dioxide promotes physiology, biochemistry, antioxidant defenses, and salt tolerance in Phaseolus vulgaris. Plants, 10(6), 1189.

Roosta, H. R., & Mohsenian, Y. (2012). Effects of foliar spray of different Fe sources on pepper (Capsicum annum L.) plants in aquaponic system. Scientia Horticulturae, 146, 182-191.

Saadi, S., Todorovic, M., Tanasijevic, L., Pereira, L. S., Pizzigalli, C., & Lionello, P. (2015). Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agricultural water management, 147, 103-115.

https://doi.org/10.1016/j.agwat.2014.05.008

Saheri, F., Barzin, G., Pishkar, L., Boojar, M. M. A., & Babaeekhou, L. (2020). Foliar spray of salicylic acid induces physiological and biochemical changes in purslane (Portulaca oleracea L.) under drought stress. Biologia, 75(12), 2189-2200.

Sardar, H., Nisar, A., Anjum, M. A., Naz, S., Ejaz, S., Ali, S., Javed, M. S., & Ahmad, R. (2021). Foliar spray of moringa leaf extract improves growth and concentration of pigment, minerals and stevioside in stevia (Stevia rebaudiana Bertoni). Industrial Crops and Products, 166, 113485.

https://doi.org/10.1016/j.indcrop.2021.113485

STRACK, D., & WRAY, V. (1989). Anthocyanins. In Methods in plant biochemistry (Vol. 1, pp. 325-356). Elsevier.

Tayyab, N., Naz, R., Yasmin, H., Nosheen, A., Keyani, R., Sajjad, M., Hassan, M. N., & Roberts, T. H. (2020). Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. PLoS One, 15(5), e0232269.

Ullah, S., Khan, M. I., Khan, M. N., Ali, U., Ali, B., Iqbal, R., Z Gaafar, A.-R., AlMunqedhi, B. M., Razak, S. A., & Kaplan, A. (2023). Efficacy of naphthyl acetic acid foliar spray in moderating drought effects on the morphological and physiological traits of maize plants (Zea mays L.). ACS omega, 8(23), 20488-20504.

https://doi.org/10.1021/acsomega.3c00753

Voogt, W., Blok, C., Eveleens, B., Marcelis, L., & Bindraban, P. (2013). VFRC Report 2013/2. In: Washington.

Waheed, A. (2014). Screening and selection of tomato genotypes/cultivars for drought tolerance using multivariate analysis. Pak J of Bot, 46(4), 1165-1178.

Wang, X., Chai, J., Liu, W., Zhu, X., Liu, H., & Wei, X. (2023). Promotion of Ca2+ Accumulation in Roots by Exogenous Brassinosteroids as a Key Mechanism for Their Enhancement of Plant Salt Tolerance: A Meta-Analysis and Systematic Review. International Journal of Molecular Sciences, 24(22), 16123.

https://doi.org/10.3390/ijms242216123

Wang, Y., Qin, T., Pu, Z., Dekomah, S. D., Yao, P., Sun, C., Liu, Y., Bi, Z., & Bai, J. (2023). Foliar application of chelated sugar alcohol calcium improves photosynthesis and tuber quality under drought stress in potatoes (Solanum tuberosum L.). International Journal of Molecular Sciences, 24(15), 12216.

Wasaya, A., Abbas, T., Yasir, T. A., Sarwar, N., Aziz, A., Javaid, M. M., & Akram, S. (2021). Mitigating drought stress in sunflower (Helianthus annuus L.) through exogenous application of β-aminobutyric acid. Journal of Soil Science and Plant Nutrition, 21, 936-948.

Xu, Z., Zhou, G., & Shimizu, H. (2010). Plant responses to drought and rewatering. Plant signaling & behavior, 5(6), 649-654.

Yan, J., Li, H., Li, Y., Zhang, N., & Zhang, S. (2022). Abscisic acid synthesis and root water uptake contribute to exogenous methyl jasmonate-induced improved tomato drought resistance. Plant Biotechnology Reports, 16(2), 183-193.

https://doi.org/10.1007/s11816-022-00753-1

Yasmeen, A., BASRA, S., MAQSOOD, A., WAHID, A., NOUMAN, W., & REHMAN, H. U. (2013). Exploring the potential of Moringa oleifera leaf extract (MLE) as a seed priming agent in improving wheat performance. Turkish Journal of Botany, 37(3), 512-520.

https://doi.org/10.3906/bot-1205-19

Zahedi, S. M., Moharrami, F., Sarikhani, S., & Padervand, M. (2020). Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Scientific Reports, 10(1), 17672.

https://doi.org/10.1038/s41598-020-74273-9

Zdravković, J., Jovanović, Z., Đorđević, M., Girek, Z., Zdravković, M., & Stikić, R. (2013). Application of stress susceptibility index for drought tolerance screening of tomato populations. Genetika, 45(3), 679-689.

https://doi.org/10.2298/gensr1303679z

Zhang, X., Zhang, X., Liu, X., Shao, L., Sun, H., & Chen, S. (2016). Improving winter wheat performance by foliar spray of ABA and FA under water deficit conditions. Journal of Plant Growth Regulation, 35, 83-96.

https://doi.org/10.1007/s00344-015-9509-6

Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food chemistry, 64(4), 555-559.

https://doi.org/10.1016/s0308-8146(98)00102-2

Zonouri, M., Javadi, T., Ghaderi, N., & Saba, M. K. (2014). Effect of foliar spraying of ascorbic acid on chlorophyll a, chlorophyll b, total chlorophyll, carotenoids, hydrogen peroxide, leaf temperature and leaf relative water content under drought stress in grapes. Bull Environ Pharmacol Life Sci, 3, 178-184.

Downloads

Published

2025-06-21

How to Cite

Batool, R., Farzand, M., Ali, H., Ashraf, A., Awais, M., & Khalid, F. (2025). Effect of Foliar by Applied Moringa Leaf Extract on Tomato Growth Performance under Drought Stress. Indus Journal of Bioscience Research, 3(6), 256-268. https://doi.org/10.70749/ijbr.v3i6.1629