Mineral Pitch Attenuates Oxidative Stress-Induced Eryptosis in Human Erythrocytes via Antioxidants and Calcium-Modulatory Mechanism
DOI:
https://doi.org/10.70749/ijbr.v3i6.1690Keywords:
Mineral Pitch, Eryptosis, Antioxidant, Oxidative Stress, ApoptosisAbstract
Background: Erythrocytes are highly susceptible to oxidative stress, which can induce eryptosis programmed cell death mechanism characterized by hemolysis, membrane blebbing, and cell shrinkage. Mineral Pitch (Asphaltum punjabium), a traditional medicinal substance, has demonstrated antioxidant potential, but its effect on erythrocyte integrity under oxidative stress has not been thoroughly investigated. Objective: This study aimed to evaluate the antioxidant and cytoprotective effects of Mineral Pitch on human erythrocytes exposed to oxidative stress induced by hyperosmotic sucrose. Methods: Human erythrocytes were treated with sucrose (350–550 mM) to induce oxidative stress and then exposed to Mineral Pitch at concentrations of 0.5, 1.0, and 1.5 g/10 mL. Hemolysis percentage, antioxidant enzyme activities (SOD, GPx, and CAT), mean corpuscular volume (MCV), and calcium channel involvement were analyzed using standard biochemical assays and ELISA. Results: Sucrose elevated hemolysis from 0.16% to 0.24%, while Mineral Pitch significantly reduced it to 0.16% at 1.5 g/10 mL. GPx activity, which decreased to 213.8 U/gHb under stress, was restored to 335 U/gHb. SOD activity improved from 877 U/gHb to 794 U/gHb, and CAT activity increased from 34.6 U/gHb to 44 U/gHb following treatment. MCV dropped to 68 fL with sucrose but was preserved at 85 fL with Mineral Pitch. Furthermore, the use of amlodipine confirmed a calcium-dependent mechanism in eryptosis, modulated by Mineral Pitch. Conclusion: Mineral Pitch demonstrates potent antioxidant and cytoprotective effects on erythrocytes under oxidative stress. It stabilizes cell membranes, restores antioxidant defenses, and regulates calcium-mediated eryptosis. These findings suggest its potential as a natural therapeutic agent against oxidative hematological damage.
Downloads
References
Lang, F., Lang, E., & Föller, M. (2012). Physiology and pathophysiology of Eryptosis. Transfusion Medicine and Hemotherapy, 39(5), 308-314.
https://doi.org/10.1159/000342534
Klinken, S. P. (2002). Red blood cells. The International Journal of Biochemistry & Cell Biology, 34(12), 1513-1518.
https://doi.org/10.1016/s1357-2725(02)00087-0
Hamasaki, N., & Yamamoto, M. (2000). Red blood cell function and blood storage. Vox Sanguinis, 79(4), 191-197.
https://doi.org/10.1159/000056729
Doulatov, S., Notta, F., Laurenti, E., & Dick, J. (2012). Hematopoiesis: A human perspective. Cell Stem Cell, 10(2), 120-136.
https://doi.org/10.1016/j.stem.2012.01.006
Palis, J. (2014). Primitive and definitive erythropoiesis in mammals. Frontiers in Physiology, 5.
https://doi.org/10.3389/fphys.2014.00003
Bhavsar, S. K., Hosseinzadeh, Z., Brenner, D., Honisch, S., Jilani, K., Liu, G., Szteyn, K., Sopjani, M., Mak, T. W., Shumilina, E., & Lang, F. (2014). Energy-sensitive regulation of Na+/K+-ATPase by Janus kinase 2. American Journal of Physiology-Cell Physiology, 306(4), C374-C384.
https://doi.org/10.1152/ajpcell.00320.2013
Hamidi, M., & Tajerzadeh, H. (2003). Carrier erythrocytes: An overview. Drug Delivery, 10(1), 9-20.
https://doi.org/10.1080/713840329
Andolfo, I., Russo, R., Gambale, A., & Iolascon, A. (2016). New insights on hereditary erythrocyte membrane defects. Haematologica, 101(11), 1284-1294.
https://doi.org/10.3324/haematol.2016.142463
Helms, C. C., Gladwin, M. T., & Kim-Shapiro, D. B. (2018). Erythrocytes and vascular function: Oxygen and nitric oxide. Frontiers in Physiology, 9.
https://doi.org/10.3389/fphys.2018.00125
Thiagarajan, P., Parker, C. J., & Prchal, J. T. (2021). How do red blood cells die? Frontiers in Physiology, 12.
https://doi.org/10.3389/fphys.2021.655393
Wu, H., Liu, X., Jaenisch, R., & Lodish, H. F. (1995). Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell, 83(1), 59-67.
https://doi.org/10.1016/0092-8674(95)90234-1
Valent, P., Büsche, G., Theurl, I., Uras, I. Z., Germing, U., Stauder, R., Sotlar, K., Füreder, W., Bettelheim, P., Pfeilstöcker, M., Oberbauer, R., Sperr, W. R., Geissler, K., Schwaller, J., Moriggl, R., Béné, M. C., Jäger, U., Horny, H., & Hermine, O. (2018). Normal and pathological erythropoiesis in adults: From gene regulation to targeted treatment concepts. Haematologica, 103(10), 1593-1603.
https://doi.org/10.3324/haematol.2018.192518
Wang, J., Wagner-Britz, L., Bogdanova, A., Ruppenthal, S., Wiesen, K., Kaiser, E., Tian, Q., Krause, E., Bernhardt, I., Lipp, P., Philipp, S. E., & Kaestner, L. (2013). Morphologically homogeneous red blood cells present a heterogeneous response to hormonal stimulation. PLoS ONE, 8(6), e67697.
https://doi.org/10.1371/journal.pone.0067697
Fowler, V. M. (2013). The human erythrocyte plasma membrane. Current Topics in Membranes, 39-88.
https://doi.org/10.1016/b978-0-12-417027-8.00002-7
Li, H., & Lykotrafitis, G. (2014). Erythrocyte membrane model with explicit description of the lipid Bilayer and the Spectrin network. Biophysical Journal, 107(3), 642-653.
https://doi.org/10.1016/j.bpj.2014.06.031
Mischitelli, M., Jemaàa, M., Fezai, M., Almasry, M., Lang, F., & Faggio, C. (2017). Stimulation of erythrocyte cell membrane scrambling by Adarotene. Cellular Physiology and Biochemistry, 41(2), 519-529.
https://doi.org/10.1159/000456942
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative stress: Harms and benefits for human health. Oxidative Medicine and Cellular Longevity, 2017(1).
https://doi.org/10.1155/2017/8416763
Aslam, H. M., Sohail, A., Shahid, A., Khan, M. A., Muhammad Umar Sharif, Kausar, R., Nawab, S., Farooq, W., Jilani, K., & Rasheed, M. (2024). Levofloxacin induces erythrocyte contraction leading to red cell death. Drug Target Insights, 18(1), 78-83.
https://doi.org/10.33393/dti.2024.3060
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative stress: Harms and benefits for human health. Oxidative Medicine and Cellular Longevity, 2017(1).
https://doi.org/10.1155/2017/8416763
Seifried, H. E., Anderson, D. E., Fisher, E. I., & Milner, J. A. (2007). A review of the interaction among dietary antioxidants and reactive oxygen species. The Journal of Nutritional Biochemistry, 18(9), 567-579.
https://doi.org/10.1016/j.jnutbio.2006.10.007
Cadenas, E., & Davies, K. J. (2000). Mitochondrial free radical generation, oxidative stress, and aging11This article is dedicated to the memory of our dear friend, colleague, and mentor Lars Ernster (1920–1998), in gratitude for all he gave to us. Free Radical Biology and Medicine, 29(3-4), 222-230.
https://doi.org/10.1016/s0891-5849(00)00317-8
Tu, B. P., & Weissman, J. S. (2004). Oxidative protein folding in eukaryotes. The Journal of Cell Biology, 164(3), 341-346.
https://doi.org/10.1083/jcb.200311055
Sikandar, M., Bari Khan, M. A., Jilani, K., & Xing, L. (2025). Effects of fluconazole on oxidative stress and cellular well-being in erythrocytes. Biochemical and Biophysical Research Communications, 770, 152006.
https://doi.org/10.1016/j.bbrc.2025.152006
Halliwell, B. (2007). Biochemistry of oxidative stress. Biochemical society transactions, 35(5), 1147-1150.
Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International journal of biomedical science: IJBS, 4(2), 89.
https://pmc.ncbi.nlm.nih.gov/articles/PMC3614697/
Wilcox, C. S., & Gutterman, D. (2005). Focus on oxidative stress in the cardiovascular and renal systems. American Journal of Physiology-Heart and Circulatory Physiology, 288(1), H3-H6.
https://doi.org/10.1152/ajpheart.00854.2004
Naveed, A., Jilani, K., Siddique, A. B., Akbar, M., Riaz, M., Mushtaq, Z., Sikandar, M., Ilyas, S., Bibi, I., Asghar, A., Rasool, G., & Irfan, M. (2020). Induction of erythrocyte shrinkage by omeprazole. Dose-Response, 18(3).
https://doi.org/10.1177/1559325820946941
Betteridge, D. J. (2000). What is oxidative stress? Metabolism, 49(2), 3-8.
https://doi.org/10.1016/s0026-0495(00)80077-3
Tsutsui, H., Kinugawa, S., & Matsushima, S. (2011). Oxidative stress and heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 301(6), H2181-H2190.
https://doi.org/10.1152/ajpheart.00554.2011
Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94(3), 651-715.
https://doi.org/10.1007/s00204-020-02689-3
Zbidah, M., Lupescu, A., Jilani, K., Fajol, A., Michael, D., Qadri, S. M., & Lang, F. (2011). Apigenin-induced suicidal erythrocyte death. Journal of Agricultural and Food Chemistry, 60(1), 533-538.
https://doi.org/10.1021/jf204107f
Roy, A. E., & Sreeni, T. V. (2022). Conceptual review on Shilajathu - An ayurvedic perspective. International Journal of Ayurveda and Pharma Research, 19-25.
https://doi.org/10.47070/ijapr.v10i7.2416
Cagno, V., Donalisio, M., Civra, A., Cagliero, C., Rubiolo, P., & Lembo, D. (2015). In vitro evaluation of the antiviral properties of Shilajit and investigation of its mechanisms of action. Journal of Ethnopharmacology, 166, 129-134.
https://doi.org/10.1016/j.jep.2015.03.019
Carrasco-Gallardo, C., Guzmán, L., & Maccioni, R. B. (2012). Shilajit: A natural Phytocomplex with potential Procognitive activity. International Journal of Alzheimer's Disease, 2012, 1-4.
https://doi.org/10.1155/2012/674142
Stohs, S. J. (2013). Safety and efficacy of Shilajit (Mumie, Moomiyo). Phytotherapy Research, 28(4), 475-479.
https://doi.org/10.1002/ptr.5018
Jafari, M., Forootanfar, H., Ameri, A., Foroutanfar, A., Adeli-Sardou, M., Rahimi, H. R., ... & Shakibaie, M. (2019). Antioxidant, cytotoxic and hyperalgesia-suppressing activity of a native Shilajit obtained from Bahr Aseman mountains. Pakistan Journal of Pharmaceutical Sciences, 32(5).
Jambi, E. J., & Abdulaziz Alshubaily, F. (2022). Shilajit potentiates the effect of chemotherapeutic drugs and mitigates metastasis induced liver and kidney damages in osteosarcoma rats. Saudi Journal of Biological Sciences, 29(9), 103393.
https://doi.org/10.1016/j.sjbs.2022.103393
Hadi, S., Ahmed, S. H., Talib, N., Hussein, H. A., & Al-Karkhi, I. H. T. (2020). Alcoholic Extract of Shilajit as Anti Protein Denaturation, Anti Blood Hemolysis, and Anti Microbial. Indian Journal of Forensic Medicine & Toxicology, 14(1).
https://doi.org/10.37506/v14/i1/2020/ijfmt/192929
Curtin, J. F., Donovan, M., & Cotter, T. G. (2002). Regulation and measurement of oxidative stress in apoptosis. Journal of Immunological Methods, 265(1-2), 49-72.
https://doi.org/10.1016/s0022-1759(02)00070-4
Isler, M., Delibas, N., Guclu, M., Gultekin, F., Sutcu, R., Bahceci, M., & Kosar, A. (2002). Superoxide dismutase and glutathione peroxidase in erythrocytes of patients with iron deficiency anemia: effects of different treatment modalities. Croatian medical journal, 43(1), 16-19.
Peskin, A. V., & Winterbourn, C. C. (2017). Assay of superoxide dismutase activity in a plate assay using WST-1. Free Radical Biology and Medicine, 103, 188-191.
https://doi.org/10.1016/j.freeradbiomed.2016.12.033
Rana, S., Dixit, S., & Mittal, A. (2019). In Silico target identification and validation for antioxidant and anti-inflammatory activity of selective phytochemicals. Brazilian Archives of Biology and Technology, 62.
https://doi.org/10.1590/1678-4324-2019190048
Shabir, K., Jilani, K., Zbidah, M., Riaz, M., Bibi, I., & Asghar, A. (2019). Triggering of erythrocyte membrane blebbing by ciprofloxacin. Acta Poloniae Pharmaceutica - Drug Research, 76(5), 901-906.
https://doi.org/10.32383/appdr/110772
Ilyas, S., Srivastava, R. R., & Kim, H. (2020). Disinfection technology and strategies for COVID-19 hospital and bio-medical waste management. Science of The Total Environment, 749, 141652.
https://doi.org/10.1016/j.scitotenv.2020.141652
Chen, L. H., & Thacker, R. R. (1984). An increase in glutathione peroxidase activity induced by high supplementation of vitamin C in rats. Nutrition Research, 4(4), 657-664.
https://doi.org/10.1016/s0271-5317(84)80039-1
Phaechamud, T., Charoenteeraboon, J., Wetwitayaklung, P., Limmatvapirat, C., & Srichan, T. (2008). Some biological activities and safety of mineral pitch. Science, Engineering and Health Studies, 7-17.
https://doi.org/10.14456/sustj.2008.6
Pant, K., Gupta, P., Damania, P., Yadav, A. K., Gupta, A., Ashraf, A., & Venugopal, S. K. (2016). Mineral pitch induces apoptosis and inhibits proliferation via modulating reactive oxygen species in hepatic cancer cells. BMC Complementary and Alternative Medicine, 16(1).
https://doi.org/10.1186/s12906-016-1131-z
Zhang, X., & Hintze, T. H. (1998). Amlodipine releases nitric oxide from canine coronary Microvessels. Circulation, 97(6), 576-580.
https://doi.org/10.1161/01.cir.97.6.576
Jilani, K., Enkel, S., Bissinger, R., Almilaji, A., Abed, M., & Lang, F. (2013). Fluoxetine induced suicidal erythrocyte death. Toxins, 5(7), 1230-1243.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.