Synergistic Effect of Biochar and Organic Fertilizers on Tomato Growth, Fruit Quality, and Yield in Heavy Metals-Contaminated Soil
DOI:
https://doi.org/10.70749/ijbr.v3i6.1742Keywords:
Heavy Metals, Biochar, Organic Fertilizers, Framyard Manure, Spent Mashroom Compost, Leaf Mould, Growth, Yield, Quality, TomatoAbstract
This study presents a novel, integrative approach to remediating heavy metal-contaminated soils by evaluating the synergistic effects of biochar in conjunction with multiple organic fertilizers such as farmyard manure (FYM), spent mushroom compost (SMC), and leaf mould (LM) on the growth, yield, and fruit quality of tomato (Solanum lycopersicum). Unlike previous research, which has predominantly assessed these amendments in isolation, our work systematically explores their combined application, offering new insights into their interactive effects on both plant productivity and heavy metal mitigation. The experiment was conducted at the Agriculture Research Station (Merged Areas) District Bajuar during the 2022 and 2023 growing seasons, utilizing a randomized complete block design (RCBD) with two factors: biochar applied at 0.0%, 1.0%, 1.5%, and 2.0% (w/w), and organic fertilizers (FYM, SMC, LM) at 2% and 3% (w/w) concentrations. Tomato seedlings (cv. Rio Grande) were transplanted into soils sourced from mining-affected sites, characterized by elevated levels of heavy metals. Results demonstrated that biochar application, particularly at 2%, significantly improved key agronomic and quality parameters, including plant height (67.53 cm), leaf area (41.68 cm2), and yield (9.45 t ha⁻¹). Notably, biochar treatments also enhanced ascorbic acid, lycopene, and carotenoids, while markedly reducing the accumulation of toxic metals in fruit tissues (2.55 mg kg-1), which remains within the maximum permissible limit set by the WHO. Organic fertilizers further contributed to these improvements, with 3% FYM yielding the highest plant height and fruit yield, and 3% SMC optimizing ascorbic acid, total phenolic content, and lycopene levels alongside a pronounced reduction in fruit heavy metal concentrations (2.39 mg kg-1) which remains within the maximum permissible limit set by the WHO. The combined application of 2% biochar with 3% FYM resulted the most substantial gains in plant growth and yield, whereas the pairing of 2% biochar with 3% SMC maximized fruit quality indices.This dual amendment strategy showed better results than using biochar or organic fertilizers alone, clearly demonstrating a synergistic effect in increasing tomato yield and reducing heavy metal uptake. The results highlight that applying 2% biochar together with 3% organic fertilizer (either FYM or SMC) is an effective and sustainable way to boost tomato growth, quality, and yield while minimizing heavy metal contamination in polluted soils.
Downloads
References
Abbey, L., & Kanton, R. A. (2004). Fertilizer type, but not time of cessation of irrigation, affect onion development and yield in a semi-arid region. Journal of Vegetable Crop Production, 9(2), 41-48.
https://doi.org/10.1300/j068v09n02_06
Agarwal, S., and R.Akkinappally. 2000. Role of β-carotene and lycopene in tomato coloration and antioxidant properties. J. of Agricultural and Food Chemistry. 48(2): 685-690.
Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J., Yang, J. E., & Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536-544.
https://doi.org/10.1016/j.biortech.2012.05.042
Ajdary, K., Singh, D., Singh, A., & Khanna, M. (2007). Modelling of nitrogen leaching from experimental onion field under drip fertigation. Agricultural Water Management, 89(1-2), 15-28.
https://doi.org/10.1016/j.agwat.2006.12.014
Ali, A., Guo, D., Zhang, Y., Sun, X., Jiang, S., Guo, Z., Huang, H., Liang, W., Li, R., & Zhang, Z. (2017). Using bamboo biochar with compost for the stabilization and phytotoxicity reduction of heavy metals in mine-contaminated soils of China. Scientific Reports, 7(1).
https://doi.org/10.1038/s41598-017-03045-9
Antonangelo, J., & Zhang, H. (2021). Influence of Biochar derived nitrogen on cadmium removal by Ryegrass in a contaminated soil. Environments, 8(2), 11.
https://doi.org/10.3390/environments8020011
ANAWAR, H. M., AKTER, F., SOLAIMAN, Z. M., & STREZOV, V. (2015). Biochar: An emerging Panacea for remediation of soil contaminants from mining, industry and sewage wastes. Pedosphere, 25(5), 654-665.
https://doi.org/10.1016/s1002-0160(15)30046-1
AOAC (2006). Official Methods of Analysis. 18th Edition, Association of Official Analytical Chemists, Gaithersburgs, MD.
Arahunashi, C.S. 2011. Influence of organics fertilizers on growth, yield and quality of tomato (Lycopersicum esculentum L. Mill.). M.Sc. Thesis. College of Agriculture, University of Agricultural Sciences. Dharwad. India.
Barber, M. C., and Barber, D., 2002. Lycopene as an antioxidant and its potential role in the prevention of prostate and other cancers. J. of Nutritional Sci. 7(4): 331-338.
Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159(12), 3269-3282.
https://doi.org/10.1016/j.envpol.2011.07.023
Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 21-34.
https://doi.org/10.1590/s1677-04202005000100003
Bista, P., Ghimire, R., Machado, S., & Pritchett, L. (2019). Biochar effects on soil properties and wheat biomass vary with fertility management. Agronomy, 9(10), 623.
https://doi.org/10.3390/agronomy9100623
Chatterjee, D., & Dasgupta, S. (2005). Visible light induced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 6(2-3), 186-205.
https://doi.org/10.1016/j.jphotochemrev.2005.09.001
Chen, Y., Camps-Arbestain, M., Shen, Q., Singh, B., & Cayuela, M. L. (2018). The long-term role of organic amendments in building soil nutrient fertility: A meta-analysis and review. Nutrient Cycling in Agroecosystems, 111(2-3), 103-125.
https://doi.org/10.1007/s10705-017-9903-5
Cobb, G. P., Sands, K., Waters, M., Wixson, B. G., & Dorward-King, E. (2000). Accumulation of heavy metals by vegetables grown in mine wastes. Environmental Toxicology and Chemistry, 19(3), 600.
https://doi.org/10.1897/1551-5028(2000)019<0600:aohmbv>2.3.co;2
Coppens, J., Grunert, O., Van Den Hende, S., Vanhoutte, I., Boon, N., Haesaert, G., & De Gelder, L. (2015). The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. Journal of Applied Phycology, 28(4), 2367-2377.
https://doi.org/10.1007/s10811-015-0775-2
Ibrahim, E. A., El-Sherbini, M. A., & Selim, E. M. (2022). Effects of biochar on soil properties, heavy metal availability and uptake, and growth of summer squash grown in metal-contaminated soil. Scientia Horticulturae, 301, 111097.
https://doi.org/10.1016/j.scienta.2022.111097
Eissa, M. A. (2019). Effect of cow manure biochar on heavy metals uptake and translocation by zucchini (Cucurbita pepo L). Arabian Journal of Geosciences, 12(2).
https://doi.org/10.1007/s12517-018-4191-1
Elawad, S. H., 2004. Impact of organic farming on soil microbial activity and microbial biomass. Soil Biology and Biochemistry. 36(6): 1023-1030.
El-Naggar, A., Lee, S. S., Awad, Y. M., Yang, X., Ryu, C., Rizwan, M., Rinklebe, J., Tsang, D. C., & Ok, Y. S. (2025). Corrigendum to “Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils” [Geoderma 332 (2018) 100–108]. Geoderma, 456, 117254.
https://doi.org/10.1016/j.geoderma.2025.117254
Farahzety, A. M., & Aishah, H. S. (2013). Effects of organic fertilizers on performance of cauliflower (Brassica oleracea var. botrytis) grown under protected structure. J. Trop. Agric. and Fd. Sc. 41, 15–25.
Fellet, G., Marchiol, L., Delle Vedove, G., & Peressotti, A. (2011). Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere, 83(9), 1262-1267.
https://doi.org/10.1016/j.chemosphere.2011.03.053
Fish, W., Young, L., & Kauffman, G. 2002. Extraction methods for lycopene: A comparative study. Sarhad J. of Agric. 18(2): 245-250.
Gao, F., Li, H., Mu, X., Gao, H., Zhang, Y., Li, R., ... & Ye, L. (2023). Effects of organic fertilizer application on tomato yield and quality: A meta-analysis. Applied sciences, 13(4), 2184.
https://doi.org/10.3390/app13042184
Ghuge, T.K., Dhumal, K.N., and Karad, S.R. 2007. Effect of organic and inorganic fertilizers on growth and yield of tomato. Asian J. of Hort. 2(2): 36–40.
Andrey, G., Rajput, V., Tatiana, M., Saglara, M., Svetlana, S., Igor, K., ... & Hasmik, M. (2019). The role of biochar-microbe interaction in alleviating heavy metal toxicity in Hordeum vulgare L. grown in highly polluted soils. Applied Geochemistry, 104, 93-101.
https://doi.org/10.1016/j.apgeochem.2019.03.017
Gruda, N., Bisbis, M., & Tanny, J. (2019). Impacts of protected vegetable cultivation on climate change and adaptation strategies for cleaner production – A review. Journal of Cleaner Production, 225, 324-339.
https://doi.org/10.1016/j.jclepro.2019.03.295
Gul, S., & Whalen, J. K. (2016). Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biology and Biochemistry, 103, 1-15.
https://doi.org/10.1016/j.soilbio.2016.08.001
Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems & Environment, 206, 46-59.
https://doi.org/10.1016/j.agee.2015.03.015
Gupta, R.K., Sharma, S., and Patel, V. 2019. Role of biofertilizers in sustainable agriculture: A review. Int. J. Agric. Sci. 11(3): 123–130.
Singh, N., Gupta, V. K., Kumar, A., & Sharma, B. (2017). Synergistic effects of heavy metals and pesticides in living systems. Frontiers in Chemistry, 5.
https://doi.org/10.3389/fchem.2017.00070
HAIDER, F. U., COULTER, J. A., CAI, L., HUSSAIN, S., CHEEMA, S. A., WU, J., & ZHANG, R. (2022). An overview on biochar production, its implications, and mechanisms of biochar-induced amelioration of soil and plant characteristics. Pedosphere, 32(1), 107-130.
https://doi.org/10.1016/s1002-0160(20)60094-7
Häkkinen, S. H., & Törrönen, A. (2000). Content of flavonols and selected phenolic acids in strawberries and vaccinium species: Influence of cultivar, cultivation site and technique. Food Research International, 33(6), 517-524.
https://doi.org/10.1016/s0963-9969(00)00086-7
Hameeda, Gul, S., Bano, G., Manzoor, M., Chandio, T. A., & Awan, A. A. (2019). Biochar and manure influences tomato fruit yield, heavy metal accumulation and concentration of soil nutrients under wastewater irrigation in arid climatic conditions. Cogent Food & Agriculture, 5(1), 1576406.
https://doi.org/10.1080/23311932.2019.1576406
Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841-1856.
https://doi.org/10.1021/jf030723c
Isitekhale, H. H. E., Osemwota, I. O., & Amhakhian, S. O. (2013). Poultry manure and NPK fertilizer application and their residual effects on the yield and yield components of tomato (Lycopersiconesculentum. Mill) in two distinct ecological zones of central southern Nigeria. Journal of Agriculture and Veterinary Science, 3(2), 40-47.
Islam, M., Al-mamun, A., Hossain, F., Quraishi, S., Naher, K., Khan, R., Das, S., Tamim, U., Hossain, S., & Nahid, F. (2017). Contamination and ecological risk assessment of trace elements in sediments of the rivers of Sundarban mangrove forest, Bangladesh. Marine Pollution Bulletin, 124(1), 356-366.
https://doi.org/10.1016/j.marpolbul.2017.07.059
ISLAM, M. S., HAN, S., AHMED, M. K., & MASUNAGA, S. (2014). Assessment of trace metal contamination in water and sediment of some rivers in Bangladesh. Journal of Water and Environment Technology, 12(2), 109-121.
https://doi.org/10.2965/jwet.2014.109
Johnson, A., Smith, B., and Lee, C. 2019. Effects of organic fertilizer amendment on soil structure and tomato quality. Sarhad J. of Agric. 35(3): 457-468.
Jones, A.B., and Brown, C.D. 2020. Impact of biochar on soil properties and crop yield: A review. J. of Soil Sci. 25(4): 567–579.
Joseph, S., Cowie, A. L., Van Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela, M. L., Graber, E. R., Ippolito, J. A., Kuzyakov, Y., Luo, Y., Ok, Y. S., Palansooriya, K. N., Shepherd, J., Stephens, S., Weng, Z. (., & Lehmann, J. (2021). How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, 13(11), 1731-1764.
https://doi.org/10.1111/gcbb.12885
Kabata-Pendias, A. & Pendias. H. (2011). Trace elements in soil and plants, 3rd Edition, Press Boca Raton FL: 114.
Karlen, D. L., & Camp, C. R. (1985). Row spacing, plant population, and water management effects on corn in the Atlantic Coastal Plain. Agronomy Journal, 77(3), 393-398.
https://doi.org/10.2134/agronj1985.00021962007700
Kavita, V., and Subramanian, R. 2007. Application of organic fertilizers and its impact on nutrient translocation and plant biomass. Sarhad J. of Agric. 23(4): 611-617.
Khan, A., Khan, S., Khan, M. A., Aamir, M., Ullah, H., Nawab, J., Rehman, I. U., & Shah, J. (2018). Heavy metals effects on plant growth and dietary intake of trace metals in vegetables cultivated in contaminated soil. International Journal of Environmental Science and Technology, 16(5), 2295-2304.
https://doi.org/10.1007/s13762-018-1849-x
Lattanzio, V., Kroon, P.A., and Koutinas, A. 2008. Polyphenols in food and beverages: Chemistry and health benefits. Comprehensive Reviews in Food Science and Food Safety. 7(4): 245–259.
La Vecchia, C. (2006). Oral contraceptives and ovarian cancer: An update, 1998–2004. European Journal of Cancer Prevention, 15(2), 117-124.
https://doi.org/10.1097/01.cej.0000179274.24200.9d
Lee, J., Park, S., and Kim, J., 2004. Biochar as a soil amendment for improving tomato yield and soil health. Soil Sci. and Plant Nutri. 50(2): 251-257.
Lehmann, J., & Joseph, S. (Eds.). (2024). Biochar for environmental management: science, technology and implementation. Taylor & Francis.
Lu, X., Wu, X., Wang, Y., Chen, H., Gao, P., & Fu, Y. (2014). Risk assessment of toxic metals in street dust from a medium-sized industrial city of China. Ecotoxicology and Environmental Safety, 106, 154-163.
https://doi.org/10.1016/j.ecoenv.2014.04.022
Luan, J., Zhang, Z., & Hu, X. (2019). Soil health improvement through long-term application of organic fertilizers. Sarhad J. of Agric. 37(6): 400-407.
Lucchini, P., Quilliam, R., DeLuca, T., Vamerali, T., & Jones, D. (2013). Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash. Environmental Science and Pollution Research, 21(5), 3230-3240.
https://doi.org/10.1007/s11356-013-2272-y
Mazumdar, B. C., & Majumder, K. (2021). Methods on physico-chemical analysis of fruits. Daya Publishing House, a division of Astral International Pvt Limited.
Meena, V. S., Maurya, B. R., & Verma, J. P. (2014). Does a rhizospheric microorganism enhance K+ availability in agricultural soils?. Microbiological research, 169(5-6), 337-347.
https://doi.org/10.1016/j.micres.2013.09.003
MINFSR. Ministry o National Food Security & Research Economic Wing, Vegetables and condiments statistics of Pakistan. 2022-2023.
www.mnfsr.ov.pk
Mitran, T., & Mani, P. K. (2017). Effect of organic amendments on rice yield trend, phosphorus use efficiency, uptake, and apparent balance in soil under long-term rice-wheat rotation. Journal of Plant Nutrition, 40(9), 1312-1322.
https://doi.org/10.1080/01904167.2016.1267205
Mohd, A.T., Rahman, M.M., & Khan, M.M. 2013. Effect of organic fertilizers on the antioxidant activity and bioactive compounds in fruits and vegetables. Sarhad Journal of Agriculture. 29(3): 423-430.
Nagaraju, A., Sudisha, J., Murthy, S. M., & Ito, S. (2012). Seed priming with Trichoderma harzianum isolates enhances plant growth and induces resistance against Plasmopara halstedii, an incitant of sunflower downy mildew disease. Australasian Plant Pathology, 41(6), 609-620.
https://doi.org/10.1007/s13313-012-0165-z
Nie, C., Yang, X., Niazi, N. K., Xu, X., Wen, Y., Rinklebe, J., Ok, Y. S., Xu, S., & Wang, H. (2018). Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study. Chemosphere, 200, 274-282.
https://doi.org/10.1016/j.chemosphere.2018.02.134
Nwachukwu, M. A., Feng, H., & Alinnor, J. (2010). Assessment of heavy metal pollution in soil and their implications within and around mechanic villages. International Journal of Environmental Science & Technology, 7(2), 347-358.
https://doi.org/10.1007/bf03326144
Ouda, B. A., & Mahadeen, A. Y. (2008). Effect of fertilizers on growth, yield, yield components, quality and certain nutrient contents in broccoli (Brassica oleracea). International Journal of Agriculture and biology, 10(6), 627-632.
Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., & Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348(1-2), 439-451.
https://doi.org/10.1007/s11104-011-0948-y
Park, J. H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N., & Chung, J. (2011). Role of organic amendments on enhanced bioremediation of heavy metal (lead) contaminated soil. Journal of Hazardous Materials, 185(2-3), 549-574.
https://doi.org/10.1016/j.jhazmat.2010.09.082
Paz-Ferreiro, J., Lu, H., Fu, S., Méndez, A., & Gascó, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. Solid Earth, 5(1), 65-75.
https://doi.org/10.5194/se-5-65-2014
Peralta, G., Hernández, M., and Domínguez, J., 2020. Quality attributes of organically grown tomatoes: Taste, ascorbic acid, and other related compounds. Journal of Agricultural and Food Chemistry. 68(4): 1054-1062.
Pinela, J., Barros, L., Carvalho, A. M., & Ferreira, I. C. (2012). Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer’ varieties in northeastern Portugal homegardens. Food and Chemical Toxicology, 50(3-4), 829-834.
https://doi.org/10.1016/j.fct.2011.11.045
Plocharski, W. J., Konopacka, D., & Zwierz, J. (2000). Comparison of Magness-Taylor's pressure test with mechanical, non-destructive methods of apple and pear firmness measurements. International agrophysics, 14(3).
Khoigani, S. R., Rajaei, A., & Goli, S. A. (2016). Evaluation of antioxidant activity, total phenolics, total flavonoids and LC–MS/MS characterisation of phenolic constituents in Stachys lavandulifolia. Natural Product Research, 31(3), 355-358.
https://doi.org/10.1080/14786419.2016.1233410
Richard, L. A. (1954). Diagnosis and improvement of saline and alkaline soils. Handbook No. 60. US Department of Agriculture.
Rizwan, M., Ali, S., Qayyum, M. F., Ibrahim, M., Zia-ur-Rehman, M., Abbas, T., & Ok, Y. S. (2015). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: A critical review. Environmental Science and Pollution Research, 23(3), 2230-2248.
https://doi.org/10.1007/s11356-015-5697-7
Scott, R. (2001). Methodology for the estimation of lycopene by spectrophotometry. Sarhad J. of Agric. 17(1): 89-94.
Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M., & Pinelli, E. (2014). Heavy-metal-Induced reactive oxygen species: Phytotoxicity and physicochemical changes in plants. Reviews of Environmental Contamination and Toxicology, 1-44.
https://doi.org/10.1007/978-3-319-06746-9_1
Sharma, S. and Bhalla, O. P. (1993). Impact of biochar on soil structure and vegetative growth of vegetables. Sarhad J. of Agric. 9(3): 219-224.
Shi, J., Yasuor, H., Yermiyahu, U., Zuo, Q., & Ben-Gal, A. (2014). Dynamic responses of wheat to drought and nitrogen stresses during re-watering cycles. Agricultural Water Management, 146, 163-172.
https://doi.org/10.1016/j.agwat.2014.08.006
Shimbo, S., Zhang, Z., Watanabe, T., Nakatsuka, H., Matsuda-Inoguchi, N., Higashikawa, K., & Ikeda, M. (2001). Cadmium and lead contents in rice and other cereal products in Japan in 1998–2000. Science of The Total Environment, 281(1-3), 165-175.
https://doi.org/10.1016/s0048-9697(01)00844-0
Singh, S., & Sinha, S. (2005). Accumulation of metals and its effects in brassica juncea (L.) Czern. (CV. Rohini) grown on various amendments of tannery waste. Ecotoxicology and Environmental Safety, 62(1), 118-127.
https://doi.org/10.1016/j.ecoenv.2004.12.026
Smith, P., Adams, J., and Jones, L. 2018. Sustainable agriculture and soil health: A global perspective. Soil and Tillage Research. 175: 1–10.
Spokas, K. A. (2010). Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Management, 1(2), 289-303.
https://doi.org/10.4155/cmt.10.32
Sreenivasa, M.N., N.Naik and S.N. Bhat. 2009. Beejamrutha: A source for beneficial bacteria. Steel, R.G.D., J. H. Torrie and D.A. Dicky. 1997. Principles and Procedures of Statistics. A Biometrical Approach. 3rd Edition, McGraw Hill. Inc. Book Co. New York. 352-358.
Srimathi, M. (2014). Influence of organic nutrients and bio regulators on growth attributes in cauliflower. Sarhad Journal of Agriculture. 30(1): 15-21.
Srivastava, S., Tripathi, R. D., & Dwivedi, U. N. (2004). Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa – an angiospermic parasite. Journal of Plant Physiology, 161(6), 665-674.
https://doi.org/10.1078/0176-1617-01274
Steel, R.G.D., Torrie, J.H., & Dickey, D.A. (1997). Principles and Procedures of Statistics: A Biometrical Approach. 3rd Edition. McGraw Hill Book Co., New York.
Stephen, J. F., Kumar, V., and Patel, R., 2014. Nutritional composition and health benefits of tomato fruit. Journal of Food Science and Technology. 51(6): 1215-1222.
Stoleru, V., Inculet, S., Mihalache, G., Cojocaru, A., Teliban, G., & Caruso, G. (2020). Yield and nutritional response of greenhouse grown tomato cultivars to sustainable fertilization and irrigation management. Plants, 9(8), 1053.
https://doi.org/10.3390/plants9081053
Suge, J. K., Omunyin, M. E., & Omami, E. N. (2011). Effect of organic and inorganic sources of fertilizer on growth, yield and fruit quality of eggplant (Solanum Melongena L). Archives of Applied Science Research, 3(6), 470-479.
Tejada, M., Garcia, C., Gonzalez, J., & Hernandez, M. (2006). Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil. Soil Biology and Biochemistry, 38(6), 1413-1421.
https://doi.org/10.1016/j.soilbio.2005.10.017
Turhan, A., 2021. The impact of organic fertilizers on lycopene, total carotenoids, vitamin C content, dry matter, and soluble solids in tomato fruits. Sarhad Journal of Agriculture, 37(2): 123-130.
Tyagi, R. and S. Kalpana. 2014. Determination of heavy metal accumulation in Lycopersicon esculentum L. grown on contaminated sites. Int. J. Chem. Sci. 12(1): 39-44.
Van Bruggen, A. H., Gamliel, A., & Finckh, M. R. (2015). Plant disease management in organic farming systems. Pest Management Science, 72(1), 30-44.
https://doi.org/10.1002/ps.4145
Vinha, A. F., Alves, R. C., Barreira, S. V., Castro, A., Costa, A. S., & Oliveira, M. B. (2014). Effect of peel and seed removal on the nutritional value and antioxidant activity of tomato (Lycopersicon esculentum L.) fruits. LWT - Food Science and Technology, 55(1), 197-202.
https://doi.org/10.1016/j.lwt.2013.07.016
Vogtmann, H., Matthies, K., Kehres, B., & Meier-Ploeger, A. (1993). Enhanced food quality: Effects of composts on the quality of plant foods. Compost Science & Utilization, 1(1), 82-100.
https://doi.org/10.1080/1065657x.1993.10771129
Wijesekara, H., S. Nanthi, Bolan, S. Aravind and S. Christopher. 2015. Utilization of Biowaste for Mine soils Rehabilitation. The 6th International Contaminated Site Remediation Conference. Melbourne, Australia.
Willcox, G., Costanza, R., and Toh, T. 2003. Assessing the sustainability of agricultural systems: The role of social, economic, and environmental indicators. Agricultural Systems. 76(1): 1–24.
Worthington, V. (2001). Nutritional quality of organic versus conventional fruits, vegetables, and grains. The Journal of Alternative and Complementary Medicine, 7(2), 161-173.
https://doi.org/10.1089/107555301750164244
Xu, P., Sun, C. X., Ye, X. Z., Xiao, W. D., Zhang, Q., & Wang, Q. (2016). The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicology and environmental safety, 132, 94-100.
https://doi.org/10.1016/j.ecoenv.2016.05.031
Xu, Y., Sun, X., & Li, Q. 2020. Organic fertilizers and their role in nutrient retention in agricultural soils. Sarhad J. of Agric. 37(4): 145-155.
Yadav, S. (2010). Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76(2), 167-179.
https://doi.org/10.1016/j.sajb.2009.10.007
Yadav, S., Singh, R., & Meena, B. 2007. Effects of organic manures on chlorophyll content and nitrogen availability in tomato plants. Sarhad Journal of Agriculture. 23(2): 225-230.
Yang, C. D., & Lu, S. G. (2020). Dynamic effects of direct returning of straw and corresponding biochar on acidity, nutrients, and exchangeable properties of red soil. Huan Jing ke Xue= Huanjing Kexue, 41(9), 4246-4252.
https://doi.org/10.13227/j.hjkx.202002213
Yin, X., Peñuelas, J., Sardans, J., Xu, X., Chen, Y., Fang, Y., Wu, L., Singh, B. P., Tavakkoli, E., & Wang, W. (2021). Effects of nitrogen-enriched biochar on rice growth and yield, iron dynamics, and soil carbon storage and emissions: A tool to improve sustainable rice cultivation. Environmental Pollution, 287, 117565.
https://doi.org/10.1016/j.envpol.2021.117565
Younis, U., Malik, S. A., Qayyum, M. F., Shah, M. H. R., Shahzad, A. N., & Mahmood, S. (2015). Biochar affects growth and biochemical activities of fenugreek (Trigonella corniculata) in cadmium polluted soil. Journal of Applied Botany and Food Quality, 88(1).
Zeidan, M. S., 2007. The effect of organic manure on soil structure, water holding capacity, and crop yield. Soil Sci. and Plant Nutri. 53(5): 583-589.
Zeinab, B.A., Ali, A.M., and Said, A.M. 2013. Effect of different organic amendments on growth and yield of tomato (Solanum lycopersicum L.) and soil properties. World J. Agric. 9(5): 347–354.
Zhou, L., Wang, J., & Liu, C. (2019). The impact of organic fertilizers on vegetable yield improvement. Sarhad J. of Agric. 37(2): 210-218.
Zhu, S., Huang, X., Ma, F., Wang, L., Duan, X., & Wang, S. (2018). Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms. Environmental science & technology, 52(15), 8649-8658.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.