Heavy Metal-Induced Oxidative Stress, Behavioral Alterations and Hematological Changes in Carp Fish (Cyprinus carpio): A Review on Physiological Impairments
DOI:
https://doi.org/10.70749/ijbr.v3i11.2647Keywords:
Oxidative Stress, Heavy Metals Toxicity, Behavior Changes, Hematology, Carp Fish.Abstract
Background: Aquatic ecosystems face an increase of contamination from heavy metals released through urban waste, agricultural runoff and industrial effluents. Such toxic elements, that are non-biodegradable, accumulate in aquatic organisms and persist in the environment, leading to various behavioral and physiological disturbances. Between freshwater species, common carp (Cyprinus carpio) aids as a best bio indicator because of its sensitivity to pollutants and wide distribution. Heavy metals for example mercury (Hg), copper (Cu), cadmium (Cd), chromium (Cr), and lead (Pb) are mainly recognized to induce oxidative stress that damages tissues and organs of fish at cellular and biochemical levels. Purpose: The aim of this review is to analyze and summarize present research on the effects of heavy metal exposure on behavioral changes, hematological changes and oxidative stress in carp fish. Its focus is to understand how such pollutants influence the normal behavioral patterns of fish, change antioxidant enzyme activity and induce hematological changes that contribute to reduced ecological fitness and physiological impairments. Materials and Methods: Related data were composed from scientific databases that include PubMed, Springer Link, Science Direct and Google Scholar. Readings associated to oxidative biomarkers, heavy metal exposure and behavioral parameters in carp fish (Cyprinus carpio) were studied. Some keywords such as “oxidative stress,” “behavioral changes,” “hematological changes”, “heavy metals,” “aquatic toxicity” and “carp fish,” were used. Comparative study of results from numerous studies was accomplished to highlight consistent variations and patterns through experimental situations. Results: Findings shown that heavy metals raise reactive oxygen species (ROS) levels that lead to oxidative stress as well as depletion of antioxidant enzymes for example catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD). Such biochemical disproportions are frequently accompanied by behavioral abnormalities for example reduced swimming performance, decreased feeding activity, loss of equilibrium and erratic movements, all are symbolic of stress as well as neurotoxicity. Conclusion: The exposure of heavy metal considerably affects the behavioral, hematological and oxidative physiology of carp fish that compromise their total health, survival and growth. The understandings of such responses offer valuable perception for ecological risk assessment and environmental monitoring. The review highlights the significance of using behavioral biomarkers and antioxidant as sensitive indicators for identifying heavy metal pollution in aquatic environments and inspires stricter pollution control approaches to shield aquatic biodiversity.
Downloads
References
1. Pal, J., Shukla, B. N., Maurya, A. K., Verma, H. O., Pandey, G., & Amitha, A. (2018). A review on role of fish in human nutrition with special emphasis to essential fatty acid. International journal of fisheries and aquatic studies, 6(2), 427-430.
https://tonic.unc.nc/wp-content/uploads/sites/15/2022/08/ReviewArtcileonFishNutrition.pdf
2. Yaqoob, S. (2021). A Review of Structure, Origin, Purpose & Impact of Common Carp (Cyprinuscarpio) in India. Annals of the Romanian Society for Cell Biology, 25(6), 34-47.
3. Elumalai, S., Prabhu, K., Selvan, G. P., & Ramasamy, P. (2023). Review on heavy metal contaminants in freshwater fish in South India: Current situation and future perspective. Environmental Science and Pollution Research, 30(57), 119594-119611.
https://doi.org/10.1007/s11356-023-30659-6
4. Sharma, M., Kant, R., Sharma, A. K., & Sharma, A. K. (2024). Exploring the impact of heavy metals toxicity in the aquatic ecosystem. International Journal of Energy and Water Resources, 9(1), 267-280.
https://doi.org/10.1007/s42108-024-00284-1
5. Sonone, S. S., Jadhav, S., Sankhla, M. S., & Kumar, R. (2020). Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett. Appl. NanoBioScience, 10(2), 2148-2166.
6. Kapoor, D., & Singh, M. P. (2021). Heavy metal contamination in water and its possible sources. In Heavy metals in the environment (pp. 179-189). Elsevier.
7. Agbugui, M. O., & Abe, G. O. (2022). Heavy metals in fish: bioaccumulation and health. British Journal of Earth Sciences Research, 10(1), 47-66.
8. Sabullah, M. K., Ahmad, S. A., Shukor, M. Y., Gansau, A. J., Syed, M. A., Sulaiman, M. R., & Shamaan, N. A. (2015). Heavy metal biomarker: Fish behavior, cellular alteration, enzymatic reaction and proteomics approaches. International Food Research Journal, 22(2).
http://www.ifrj.upm.edu.my/22%20(02)%202015/(2).pdf
9. Hoseinifar, S. H., Yousefi, S., Van Doan, H., Ashouri, G., Gioacchini, G., Maradonna, F., & Carnevali, O. (2020). Oxidative stress and antioxidant defense in fish: The implications of probiotic, prebiotic, and Synbiotics. Reviews in Fisheries Science & Aquaculture, 29(2), 198-217.
https://doi.org/10.1080/23308249.2020.1795616
10. Slaninova, A., Smutna, M., Modra, H., & Svobodova, Z. (2009). REVIEWS Oxidative stress in fish induced by pesticides. Neuroendocrinology Letters, 30(1), 2.
11. Chowdhury, S., & Saikia, S. K. (2020). Oxidative stress in fish: A review. Journal of Scientific Research, 12(1), 145-160.
https://doi.org/10.3329/jsr.v12i1.41716
12. Xu, Z., Cao, J., Qin, X., Qiu, W., Mei, J., & Xie, J. (2021). Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and tissue structure in fish exposed to ammonia nitrogen: A review. Animals, 11(11), 3304.
https://doi.org/10.3390/ani11113304
13. Scott, G. R., & Sloman, K. A. (2004). The effects of environmental pollutants on complex fish behaviour: Integrating behavioural and physiological indicators of toxicity. Aquatic Toxicology, 68(4), 369-392.
https://doi.org/10.1016/j.aquatox.2004.03.016
14. Lebrun, J., & Gismondi, E. (2020). Behavioural and biochemical alterations in gammarids as induced by chronic metallic exposures (Cd, CU and PB): Implications for freshwater biomonitoring. Chemosphere, 257, 127253.
https://doi.org/10.1016/j.chemosphere.2020.127253
15. Sarasamma, S., Audira, G., Samikannu, P., Juniardi, S., Siregar, P., Hao, E., Chen, J., & Hsiao, C. (2019). Behavioral impairments and oxidative stress in the brain, muscle, and Gill caused by chronic exposure of C70 nanoparticles on adult Zebrafish. International Journal of Molecular Sciences, 20(22), 5795.
https://doi.org/10.3390/ijms20225795
16. Vinodhini, R., & Narayanan, M. (2009). The impact of toxic heavy metals on the hematological parameters in common carp (Cyprinus carpio L.). Journal of Environmental Health Science & Engineering, 6(1), 23-28.
https://ijehse.tums.ac.ir/index.php/jehse/article/view/188
17. Habib, S. S., Maqaddas, S., Fazio, F., EL Amouri, R., Shaikh, G. S., Rahim, A., Khan, K., Ullah, J., Mohany, M., Parrino, V., & Al-Emam, A. (2024). Evaluation of lead exposure effects on tissue accumulation, behavior, morphological and hemato-biochemical changes in common carp, cyprinus Carpio. Journal of Trace Elements in Medicine and Biology, 86, 127523.
https://doi.org/10.1016/j.jtemb.2024.127523
18. Mustafa, S. A. (2012). An integrated approach to assess impact of environmental stress in carp, Cyprinus carpio L.: Biochemical, genotoxic, histopathological and individual level effects.
https://pearl.plymouth.ac.uk/fose-theses-other/228/
19. Rajeshkumar, S., Liu, Y., Ma, J., Duan, H. Y., & Li, X. (2017). Effects of exposure to multiple heavy metals on biochemical and histopathological alterations in common carp, cyprinus Carpio L. Fish & Shellfish Immunology, 70, 461-472.
https://doi.org/10.1016/j.fsi.2017.08.013
20. Sharma, M., Kant, R., Sharma, A. K., & Sharma, A. K. (2024). Exploring the impact of heavy metals toxicity in the aquatic ecosystem. International Journal of Energy and Water Resources, 9(1), 267-280.
https://doi.org/10.1007/s42108-024-00284-1
21. Jagaba, A. H., Lawal, I. M., Birniwa, A. H., Affam, A. C., Usman, A. K., Soja, U. B., Saleh, D., Hussaini, A., Noor, A., & Yaro, N. S. (2023). Sources of water contamination by heavy metals. Membrane Technologies for Heavy Metal Removal from Water, 3-27.
https://doi.org/10.1201/9781003326281-2
22. Afzaal, M., Hameed, S., Liaqat, I., Ali Khan, A. A., Abdul Manan, H., Shahid, R., & Altaf, M. (2022). Heavy metals contamination in water, sediments and fish of freshwater ecosystems in Pakistan. Water Practice and Technology, 17(5), 1253-1272.
https://doi.org/10.2166/wpt.2022.039
23. Afzaal, M., Hameed, S., Liaqat, I., Ali Khan, A. A., Abdul Manan, H., Shahid, R., & Altaf, M. (2022). Heavy metals contamination in water, sediments and fish of freshwater ecosystems in Pakistan. Water Practice and Technology, 17(5), 1253-1272.
https://doi.org/10.2166/wpt.2022.039
24. Agbugui, M. O., & Abe, G. O. (2022). Heavy metals in fish: bioaccumulation and health. British Journal of Earth Sciences Research, 10(1), 47-66.
25. Pereira, L. C., De Souza, A. O., Bernardes, M. F., Pazin, M., Tasso, M. J., Pereira, P. H., & Dorta, D. J. (2015). A perspective on the potential risks of emerging contaminants to human and environmental health. Environmental Science and Pollution Research, 22(18), 13800-13823.
https://doi.org/10.1007/s11356-015-4896-6
26. Zhang, P., Yang, M., Lan, J., Huang, Y., Zhang, J., Huang, S., Yang, Y., & Ru, J. (2023). Water quality degradation due to heavy metal contamination: Health impacts and eco-friendly approaches for heavy metal remediation. Toxics, 11(10), 828.
https://doi.org/10.3390/toxics11100828
27. Gashkina, N. A. (2024). Metal toxicity: Effects on energy metabolism in fish. International Journal of Molecular Sciences, 25(9), 5015.
https://doi.org/10.3390/ijms25095015
28. Lushchak, V. I. (2015). Contaminant-induced oxidative stress in fish: A mechanistic approach. Fish Physiology and Biochemistry, 42(2), 711-747.
https://doi.org/10.1007/s10695-015-0171-5
29. Jomova, K., & Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology, 283(2-3), 65-87.
https://doi.org/10.1016/j.tox.2011.03.001
30. Wu, D., Li, J., Fan, Z., Wang, L., & Zheng, X. (2022). Resveratrol ameliorates oxidative stress, inflammatory response and lipid metabolism in common carp (Cyprinus Carpio) fed with high-fat diet. Frontiers in Immunology, 13.
https://doi.org/10.3389/fimmu.2022.965954
31. Ali, Z., Yousafzai, A. M., Sher, N., Muhammad, I., Nayab, G. E., Aqeel, S. A., Shah, S. T., Aschner, M., Khan, I., & Khan, H. (2021). Toxicity and bioaccumulation of manganese and chromium in different organs of common carp (Cyprinus Carpio) fish. Toxicology Reports, 8, 343-348.
https://doi.org/10.1016/j.toxrep.2021.02.003
32. Rajeshkumar, S., Liu, Y., Ma, J., Duan, H. Y., & Li, X. (2017). Effects of exposure to multiple heavy metals on biochemical and histopathological alterations in common carp, cyprinus Carpio L. Fish & Shellfish Immunology, 70, 461-472.
https://doi.org/10.1016/j.fsi.2017.08.013
33. Dawood, M. A., Alkafafy, M., & Sewilam, H. (2022). The antioxidant responses of gills, intestines and livers and blood immunity of common carp (Cyprinus Carpio) exposed to salinity and temperature stressors. Fish Physiology and Biochemistry, 48(2), 397-408.
https://doi.org/10.1007/s10695-022-01052-w
34. VINODHINI, R., & NARAYANAN, M. (2009). Biochemical changes of antioxidant enzymes in common carp (Cyprinus Carpio L.) after heavy metal exposure. Turkish Journal of Veterinary & Animal Sciences.
https://doi.org/10.3906/vet-0711-18
35. Srikanth, K., Pereira, E., Duarte, A. C., & Ahmad, I. (2013). Glutathione and its dependent enzymes’ modulatory responses to toxic metals and metalloids in fish—a review. Environmental Science and Pollution Research, 20(4), 2133-2149.
https://doi.org/10.1007/s11356-012-1459-y
36. VINODHINI, R., & NARAYANAN, M. (2009). Biochemical changes of antioxidant enzymes in common carp (Cyprinus Carpio L.) after heavy metal exposure. Turkish Journal of Veterinary & Animal Sciences.
https://doi.org/10.3906/vet-0711-18
37. Mustafa, S. A. An integrated approach to assess impact of environmental stress in carp, Cyprinus carpio L.: Biochemical, genotoxic, histopathological and individual level effects.
https://pearl.plymouth.ac.uk/fose-theses-other/228/
38. Gao, F., Zhao, Y., Shi, X., Qiao, D., Pei, C., & Kong, X. (2024). Signalling regulation of reactive oxygen species in fish inflammation. Reviews in Aquaculture, 16(3), 1266-1285.
https://doi.org/10.1111/raq.12895
39. Subaramaniyam, U., Allimuthu, R. S., Vappu, S., Ramalingam, D., Balan, R., Paital, B., Panda, N., Rath, P. K., Ramalingam, N., & Sahoo, D. K. (2023). Effects of microplastics, pesticides and nano-materials on fish health, oxidative stress and antioxidant defense mechanism. Frontiers in Physiology, 14.
https://doi.org/10.3389/fphys.2023.1217666
40. Halappa R, David M. Behavioral responses of the freshwater fish, Cyprinus carpio (Linnaeus) following sublethal exposure to chlorpyrifos. Turkish Journal of Fisheries and Aquatic Sciences. 2009 Feb 1;9(2).
41. Habib, S. S., Maqaddas, S., Fazio, F., EL Amouri, R., Shaikh, G. S., Rahim, A., Khan, K., Ullah, J., Mohany, M., Parrino, V., & Al-Emam, A. (2024). Evaluation of lead exposure effects on tissue accumulation, behavior, morphological and hemato-biochemical changes in common carp, cyprinus Carpio. Journal of Trace Elements in Medicine and Biology, 86, 127523.
https://doi.org/10.1016/j.jtemb.2024.127523
42. Farooq, S., Wali, A. F., Majid, S., Rasool, S., Wani, H. A., Bhat, S. A., Ali, S., Wani, H. A., Echikoti, R., Rasool, S., Ahmad, A., & Rehman, M. U. (2021). Neurotoxicity of heavy metals in fishes: A mechanistic approach. Freshwater Pollution and Aquatic Ecosystems, 85-107.
https://doi.org/10.1201/9781003130116-4
43. Lushchak, V. I. (2015). Contaminant-induced oxidative stress in fish: A mechanistic approach. Fish Physiology and Biochemistry, 42(2), 711-747.
https://doi.org/10.1007/s10695-015-0171-5
44. Morales DV. Behavioral and Physiological Effects of Heavy Metals on Fish: A Review and Preliminary Results.
45. Tkachenko, H., Kurhaluk, N., Kasiyan, O., & Kamiński, P. (2021). Dietary nutrients and health risks from exposure to some heavy metals through the consumption of the farmed common carp (Cyprinus CARPIO). Journal of Environmental Health Science and Engineering, 19(1), 793-804.
https://doi.org/10.1007/s40201-021-00647-4
46. Sorensen, E. M. (1991). Metal poisoning in fish. CRC press.
47. Habib, S. S., Maqaddas, S., Fazio, F., EL Amouri, R., Shaikh, G. S., Rahim, A., Khan, K., Ullah, J., Mohany, M., Parrino, V., & Al-Emam, A. (2024). Evaluation of lead exposure effects on tissue accumulation, behavior, morphological and hemato-biochemical changes in common carp, cyprinus Carpio. Journal of Trace Elements in Medicine and Biology, 86, 127523.
https://doi.org/10.1016/j.jtemb.2024.127523
48. Jasim, B. (2017). Impact of certain heavy metals on histology and physiology of fishes: Interpretative study. Annual Research & Review in Biology, 19(6), 1-21.
https://doi.org/10.9734/arrb/2017/36911
49. Gashkina, N. A. (2024). Metal toxicity: Effects on energy metabolism in fish. International Journal of Molecular Sciences, 25(9), 5015.
https://doi.org/10.3390/ijms25095015
50. Habib, S. S., Maqaddas, S., Fazio, F., EL Amouri, R., Shaikh, G. S., Rahim, A., Khan, K., Ullah, J., Mohany, M., Parrino, V., & Al-Emam, A. (2024). Evaluation of lead exposure effects on tissue accumulation, behavior, morphological and hemato-biochemical changes in common carp, cyprinus Carpio. Journal of Trace Elements in Medicine and Biology, 86, 127523.
https://doi.org/10.1016/j.jtemb.2024.127523
51. Huntingford, F. A., Andrew, G., Mackenzie, S., Morera, D., Coyle, S. M., Pilarczyk, M., & Kadri, S. (2010). Coping strategies in a strongly schooling fish, the common carp Cyprinus carpio. Journal of Fish Biology, 76(7), 1576-1591.
https://doi.org/10.1111/j.1095-8649.2010.02582.x
52. Burren, A., & Pietsch, C. (2021). Distress regulates different pathways in the brain of common carp: A preliminary study. Animals, 11(2), 585.
https://doi.org/10.3390/ani11020585
53. Heidary, S., Hajimoradloo, A., Bani, A., Aghamaali, M., & Ghorbani, R. (2016). Changes in biochemical and physiological responses of common carp, Cyprinus carpio L. after long-term exposure to Pb (II). Caspian Journal of Environmental Sciences, 14(4), 311-320.
https://cjes.guilan.ac.ir/article_2073.html
54. Jaffer, N. S., Rabee, A. M., & Al-Chalabi, S. M. (2017). Biochemical and hematological parameters and histological alterations in fish Cyprinus carpio L. as biomarkers for water pollution with chlorpyrifos. Human and Ecological Risk Assessment: An International Journal, 23(3), 605-616.
https://doi.org/10.1080/10807039.2016.1261626
55. Najem, E., Hussein, S., Kane, A., & Ezzy, A. (2024). Bioaccumulation of lead, arsenic, and mercury in vital organs of common carp (Cyprinus carpio L.): Assessment of pathological effects and possible hazards associated with human consumption. Open Veterinary Journal, 14(11), 2780.
https://doi.org/10.5455/ovj.2024.v14.i11.7
56. Habib, S. S., Maqaddas, S., Fazio, F., Amouri, R. E., Shaikh, G. S., Rahim, A., ... & Al-Emam, A. (2024). Evaluation of lead exposure effects on tissue accumulation, behavior, morphological and hemato-biochemical changes in common carp, Cyprinus carpio. Journal of Trace Elements in Medicine and Biology, 86, 127523.
https://doi.org/10.1016/j.jtemb.2024.127523
57. Xu, T., Liu, Q., Chen, D., & Liu, Y. (2022). Atrazine exposure induces necroptosis through the P450/ROS pathway and causes inflammation in the Gill of common carp (Cyprinus Carpio L.). Fish & Shellfish Immunology, 131, 809-816.
https://doi.org/10.1016/j.fsi.2022.10.022
58. Habib, S. S., Maqaddas, S., Fazio, F., Amouri, R. E., Shaikh, G. S., Rahim, A., ... & Al-Emam, A. (2024). Evaluation of lead exposure effects on tissue accumulation, behavior, morphological and hemato-biochemical changes in common carp, Cyprinus carpio. Journal of Trace Elements in Medicine and Biology, 86, 127523.
https://doi.org/10.1016/j.jtemb.2024.127523.
59. Ahmed, I., Zakiya, A., & Fazio, F. (2022). Effects of aquatic heavy metal intoxication on the level of hematocrit and hemoglobin in fishes: A review. Frontiers in Environmental Science, 10.
https://doi.org/10.3389/fenvs.2022.919204
60. Vinodhini R, Narayanan M. The impact of toxic heavy metals on the hematological parameters in common carp (Cyprinus carpio L.). Journal of Environmental Health Science & Engineering. 2009;6(1):23-8.
61. Witeska, M. (2001). Changes in the common carp blood cell picture after acute exposure to cadmium. Acta Zoologica Lituanica, 11(4), 366-371.
https://doi.org/10.1080/13921657.2001.10512472
62. Habib, S. S., Maqaddas, S., Fazio, F., Amouri, R. E., Shaikh, G. S., Rahim, A., ... & Al-Emam, A. (2024). Evaluation of lead exposure effects on tissue accumulation, behavior, morphological and hemato-biochemical changes in common carp, Cyprinus carpio. Journal of Trace Elements in Medicine and Biology, 86, 127523.
https://doi.org/10.1016/j.jtemb.2024.127523.
63. Habib, S. S., Maqaddas, S., Fazio, F., Amouri, R. E., Shaikh, G. S., Rahim, A., ... & Al-Emam, A. (2024). Evaluation of lead exposure effects on tissue accumulation, behavior, morphological and hemato-biochemical changes in common carp, Cyprinus carpio. Journal of Trace Elements in Medicine and Biology, 86, 127523.
https://doi.org/10.1016/j.jtemb.2024.127523.
64. Habib, S. S., Maqaddas, S., Fazio, F., Amouri, R. E., Shaikh, G. S., Rahim, A., ... & Al-Emam, A. (2024). Evaluation of lead exposure effects on tissue accumulation, behavior, morphological and hemato-biochemical changes in common carp, Cyprinus carpio. Journal of Trace Elements in Medicine and Biology, 86, 127523.
https://doi.org/10.1016/j.jtemb.2024.127523.
65. De Smet, H., & Blust, R. (2001). Stress responses and changes in protein metabolism in carp cyprinus Carpio during cadmium exposure. Ecotoxicology and Environmental Safety, 48(3), 255-262.
https://doi.org/10.1006/eesa.2000.2011
66. Vinodhini, R., & Narayanan, M. (2008). Bioaccumulation of heavy metals in organs of fresh water fish cyprinus Carpio (Common carp). International Journal of Environmental Science & Technology, 5(2), 179-182.
https://doi.org/10.1007/bf03326011
67. Vinodhini, R., & Narayanan, M. (2008). Bioaccumulation of heavy metals in organs of fresh water fish cyprinus Carpio (Common carp). International Journal of Environmental Science & Technology, 5(2), 179-182.
https://doi.org/10.1007/bf03326011
68. Das M, Paul M, Das J, Mandal B. Impact of heavy metals on fish reproduction: Mechanisms, implications, and mitigation strategies.
69. Rajeshkumar, S., Liu, Y., Ma, J., Duan, H. Y., & Li, X. (2017). Effects of exposure to multiple heavy metals on biochemical and histopathological alterations in common carp, cyprinus Carpio L. Fish & Shellfish Immunology, 70, 461-472.
https://doi.org/10.1016/j.fsi.2017.08.013
70. Chen, S., & Ding, Y. (2023). Tackling heavy metal pollution: Evaluating governance models and frameworks. Sustainability, 15(22), 15863.
https://doi.org/10.3390/su152215863
71. Kundu, D., Dutta, D., Mondal, S., Haque, S., Bhakta, J. N., & Jana, B. B. (2020). Application of potential biological agents in green bioremediation technology. Waste Management, 1192-1216.
https://doi.org/10.4018/978-1-7998-1210-4.ch054
72. Oros, A., Coatu, V., Damir, N., Danilov, D., Ristea, E., & Lazar, L. (2025). Molecular mechanisms and biomarker-based early-warning indicators of heavy metal toxicity in marine fish. Fishes, 10(7), 339.
https://doi.org/10.3390/fishes10070339
73. Curtis, B. J., Niemuth, N. J., Bennett, E., Schmoldt, A., Mueller, O., Mohaimani, A. A., Laudadio, E. D., Shen, Y., White, J. C., Hamers, R. J., & Klaper, R. D. (2022). Author correction: Cross-species transcriptomic signatures identify mechanisms related to species sensitivity and common responses to nanomaterials. Nature Nanotechnology, 17(7), 799-799.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
