Green Synthesis of Turmuric by Using Curcumin Conjugated Cerium (CU-CE-CUO-NP) Nanoparticles and Evaluation of Antibacterial and Anticancer Activity
DOI:
https://doi.org/10.70749/ijbr.v4i1.2825Keywords:
Nanoparticles, Curcumin, MTT assay, Anticancer agent, Drug delivery agentAbstract
This study explores the multifaceted properties of synthesized Copper-Cerium Nano Particles (Cu-Ce NPs) and their potential applications in medicine, healthcare, and biotechnology. The antioxidative potential of Cu-Ce NPs was assessed through DPPH and NO radical scavenging assays, revealing their ability to scavenge free radicals effectively. A positive correlation between Cu-Ce NP concentration and scavenging percentage was observed, with concentrations as low as 15 µg/mL displaying significant antioxidative activity and reaching a peak of 54.10% at 450 µg/mL. These findings indicate that Cu-Ce NPs possess strong antioxidant properties, essential for combating oxidative stress-related health issues.The study also highlighted the antibacterial efficacy of Cu-Ce NPs derived from turmeric leaves against both Gram-negative (E. coli) and Gram-positive (Bacillus subtilis) bacteria. Clear inhibition zones in agar well diffusion assays demonstrated their potential as antibacterial agents. Confirmation of antibacterial activity was obtained through culture-based methods, further substantiating the broad-spectrum antibacterial properties of Cu-Ce-Cuo NPs. Furthermore, Cur-Ce-CuO NPs were successfully synthesized and characterized, revealing the conjugation of curcumin with copper-cerium oxide nanoparticles. The possibility of inhibiting cancer cell proliferation was demonstrated through MTT assays, suggesting potential anticancer properties. In conclusion, Cu-Ce-Cuo NPs exhibit versatile properties, including antioxidative potential, antibacterial activity, and anticancer effects. These properties position them as promising therapeutic agents, offering solutions to health challenges and medical treatments. Further research and development hold the potential to unlock new avenues for addressing critical health issues and enhancing medical interventions.
Downloads
References
1. Fakruddin, M., Z. Hossain, and H. Afroz, Retraction: Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnology, 2012. 10: p. 40.
https://doi.org/10.1186/1477-3155-10-40
2. Chattopadhyay, N., et al., Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation. 2013. 137: p. 81-91.
https://doi.org/10.1007/s10549-012-2338-4
3. Bressot, C., et al., Exposure assessment of Nanomaterials at production sites by a Short Time Sampling (STS) approach: Strategy and first results of measurement campaigns. Process Safety and Environmental Protection, 2018. 116: p. 324-332.
https://doi.org/10.1016/j.psep.2018.02.012
4. Khan, I., K. Saeed, and I. Khan, Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 2019. 12(7): p. 908-931.
https://doi.org/10.1016/j.arabjc.2017.05.011
5. Rani, P., et al., Silver nanostructures prepared via novel green approach as an effective platform for biological and environmental applications. Saudi Journal of Biological Sciences, 2022. 29(6): p. 103296.
https://doi.org/10.1016/j.sjbs.2022.103296
6. Ramanathan, R., S.K. Bhargava, and V. Bansal. Biological synthesis of copper/copper oxide nanoparticles. 2011.
https://doi.org/10.1071/ch10343
7. Devi, H.S. and T.D. Singh. Synthesis of Copper Oxide Nanoparticles by a Novel Method and its Application in the Degradation of Methyl Orange. 2014.
8. Kalaycıoğlu, Z., Geçim, B., & Erim, F. B. (2022). Green synthesis of cerium oxide nanoparticles from turmeric and kinds of honey: characterisations, antioxidant and photocatalytic dye degradation activities. Advances in Natural Sciences: Nanoscience and Nanotechnology, 13(1), 015016.
https://doi.org/10.1088/2043-6262/ac5dc5
9. Zholobak, N. M., Shcherbakov, A. B., Ivanova, O. S., Reukov, V., Baranchikov, A. E., & Ivanov, V. K. (2020). Nanoceria-curcumin conjugate: Synthesis and selective cytotoxicity against cancer cells under oxidative stress conditions. Journal of Photochemistry and Photobiology B: Biology, 209, 111921.
https://doi.org/10.1016/j.jphotobiol.2020.111921
10. Andrabi, S. M., Majumder, S., Gupta, K. C., & Kumar, A. (2020). Dextran based amphiphilic nano-hybrid hydrogel system incorporated with curcumin and cerium oxide nanoparticles for wound healing. Colloids and Surfaces B: Biointerfaces, 195, 111263.
https://doi.org/10.1016/j.colsurfb.2020.111263
11. Andrabi, S. M., Majumder, S., Gupta, K. C., & Kumar, A. (2020). Dextran based amphiphilic nano-hybrid hydrogel system incorporated with curcumin and cerium oxide nanoparticles for wound healing. Colloids and Surfaces B: Biointerfaces, 195, 111263.
https://doi.org/10.1016/j.colsurfb.2020.111263
12. Shirokikh, A. D., Anikina, V. A., Zamyatina, E. A., Mishchenko, E. V., Koroleva, M. Y., Ivanov, V. K., & Popova, N. R. (2023). Bioavailability of nanoenulsions modified with curcumin and cerium dioxide nanoparticles. Наносистемы: физика, химия, математика, 14(1), 89-97.
https://doi.org/10.17586/2220-8054-2023-14-1-89-97
13. Kalashnikova, I., Mazar, J., Neal, C. J., Rosado, A. L., Das, S., Westmoreland, T. J., & Seal, S. (2017). Nanoparticle delivery of curcumin induces cellular hypoxia and ROS-mediated apoptosis via modulation of Bcl-2/Bax in human neuroblastoma. Nanoscale, 9(29), 10375-10387.
https://doi.org/10.1039/c7nr02770b
14. Gao, Y., Chen, K., Ma, J. L., & Gao, F. (2014). Cerium oxide nanoparticles in cancer. OncoTargets and therapy, 835-840.
https://doi.org/10.2147/ott.s62057
15. Amer, M., Abdel Moawed, D., Sameh, R., Agaga, R. A., Elwany, N., & Abdelhamid, A. M. (2023). Protective Effect of Curcumin and Cerium Oxide Nanoparticles on Carboplatin Induced Myelotoxicity and Hepatotoxicity in Adult Male Wistar Rats. Zagazig Journal of Forensic Medicine, 21(2), 55-83.
https://doi.org/10.21608/zjfm.2023.194806.1142
16. Inbaraj, B. S., & Chen, B. H. (2020). An overview on recent in vivo biological application of cerium oxide nanoparticles. Asian journal of pharmaceutical sciences, 15(5), 558-575.
https://doi.org/10.1016/j.ajps.2019.10.005
17. Singh, R. P. (2019). Potential of biogenic plant-mediated copper and copper oxide nanostructured nanoparticles and their utility. Plant Nanobionics: Volume 2, Approaches in Nanoparticles, Biosynthesis, and Toxicity, 115-176.
https://doi.org/10.1007/978-3-030-16379-2_5
18. Arab, C., El Kurdi, R., & Patra, D. (2021). Chitosan coated zinc curcumin oxide nanoparticles for the determination of ascorbic acid. Journal of Molecular Liquids, 328, 115504.
https://doi.org/10.1016/j.molliq.2021.115504
19. Siddiqui, M. A., Alhadlaq, H. A., Ahmad, J., Al-Khedhairy, A. A., Musarrat, J., & Ahamed, M. (2013). Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PloS one, 8(8), e69534.
https://doi.org/10.1371/journal.pone.0069534
20. Javid-Naderi, M. J., Sabouri, Z., Jalili, A., Zarrinfar, H., Samarghandian, S., & Darroudi, M. (2023). Green synthesis of copper oxide nanoparticles using okra (Abelmoschus esculentus) fruit extract and assessment of their cytotoxicity and photocatalytic applications. Environmental Technology & Innovation, 32, 103300.
https://doi.org/10.1016/j.eti.2023.103300
21. Roudbaneh, S. Z. K., Kahbasi, S., Sohrabi, M. J., Hasan, A., Salihi, A., Mirzaie, A., ... & Falahati, M. (2019). Albumin binding, antioxidant and antibacterial effects of cerium oxide nanoparticles. Journal of Molecular Liquids, 296, 111839.
https://doi.org/10.1016/j.molliq.2019.111839
22. Chalse, M. N., Aswar, U. M., & Pethkar, A. V. (2023). Novel micronutrient laced biogenic copper oxide nanoparticles for treatment of diabetes in Wistar rats. Journal of Drug Delivery Science and Technology, 88, 104941.
https://doi.org/10.1016/j.jddst.2023.104941
23. Akhtar, M. J., Kumar, S., Alhadlaq, H. A., Alrokayan, S. A., Abu-Salah, K. M., & Ahamed, M. (2016). Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Toxicology and industrial health, 32(5), 809-821.
https://doi.org/10.1177/0748233713511512
24. Tommalieh, M. J. (2021). Gamma radiation assisted modification on electrical properties of polyvinyl pyrrolidone/polyethylene oxide blend doped by copper oxide nanoparticles. Radiation Physics and Chemistry, 179, 109236.
https://doi.org/10.1016/j.radphyschem.2020.109236
25. Moradpoor, H., Safaei, M., Mozaffari, H. R., Sharifi, R., Imani, M. M., Golshah, A., & Bashardoust, N. (2021). An overview of recent progress in dental applications of zinc oxide nanoparticles. RSC advances, 11(34), 21189-21206.
https://doi.org/10.1039/d0ra10789a
26. Singh, K. R., Nayak, V., Singh, J., Singh, A. K., & Singh, R. P. (2021). Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC advances, 11(40), 24722-24746.
https://doi.org/10.1039/d1ra04273d
27. Haseena, S., Shanavas, S., Duraimurugan, J., Ahamad, T., Alshehri, S. M., Acevedo, R., & Jayamani, N. (2019). Investigation on photocatalytic and antibacterial ability of green treated copper oxide nanoparticles using Artabotrys Hexapetalus and Bambusa Vulgaris plant extract. Materials Research Express, 6(12), 125064.
https://doi.org/10.1088/2053-1591/ab59a9
28. Nalabotu, S. K., Kolli, M. B., Triest, W. E., Ma, J. Y., Manne, N. D., Katta, A., ... & Blough, E. R. (2011). Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague-Dawley rats. International Journal of Nanomedicine, 2327-2335.
https://doi.org/10.2147/ijn.s25119
29. Varaprasad, K., López, M., Núñez, D., Jayaramudu, T., Sadiku, E. R., Karthikeyan, C., & Oyarzúnc, P. (2020). Antibiotic copper oxide-curcumin nanomaterials for antibacterial applications. Journal of Molecular Liquids, 300, 112353.
https://doi.org/10.1016/j.molliq.2019.112353
30. Faisal, S., Al-Radadi, N. S., Jan, H., Shah, S. A., Shah, S., Rizwan, M., & Bibi, N. (2021). Curcuma longa mediated synthesis of copper oxide, nickel oxide and Cu-Ni bimetallic hybrid nanoparticles: characterization and evaluation for antimicrobial, anti-parasitic and cytotoxic potentials. Coatings, 11(7), 849.
https://doi.org/10.3390/coatings11070849
31. Farkhonde Masoule, S., Pourhajibagher, M., Safari, J., & Khoobi, M. (2019). Base-free green synthesis of copper (II) oxide nanoparticles using highly cross-linked poly (curcumin) nanospheres: synergistically improved antimicrobial activity. Research on Chemical Intermediates, 45, 4449-4462.
https://doi.org/10.1007/s11164-019-03841-0
32. Atloo, T., Mohammadkhani, R., Mohammadi, A., Zaboli, K. A., Kaboli, S., Rahimi, H., & Danafar, H. (2022). The Bovine Serum Albumin Coated Copper Oxide Nanoparticle for Curcumin Delivery in Biological Environment: In-vitro Drug Release. Journal of Polymers and the Environment, 30(8), 3203-3208.
https://doi.org/10.1007/s10924-022-02401-9
33. Tohamy, H. G., El Okle, O. S., Goma, A. A., Abdel-Daim, M. M., & Shukry, M. (2022). Hepatorenal protective effect of nano-curcumin against nano-copper oxide-mediated toxicity in rats: Behavioral performance, antioxidant, anti-inflammatory, apoptosis, and histopathology. Life Sciences, 292, 120296.
https://doi.org/10.1016/j.lfs.2021.120296
34. Ali, M., Ijaz, M., Ikram, M., Ul-Hamid, A., Avais, M., & Anjum, A. A. (2021). Biogenic synthesis, characterization and antibacterial potential evaluation of copper oxide nanoparticles against Escherichia coli. Nanoscale Research Letters, 16, 1-13.
https://doi.org/10.1186/s11671-021-03605-z
35. Patra, D., & El Kurdi, R. (2021). Curcumin as a novel reducing and stabilizing agent for the green synthesis of metallic nanoparticles. Green Chemistry Letters and Reviews, 14(3), 474-487.
https://doi.org/10.1080/17518253.2021.1941306
36. Sathiyabama, M., Indhumathi, M., & Amutha, T. (2020). Preparation and characterization of curcumin functionalized copper nanoparticles and their application enhances disease resistance in chickpea against wilt pathogen. Biocatalysis and Agricultural Biotechnology, 29, 101823.
https://doi.org/10.1016/j.bcab.2020.101823
37. Rajeshkumar, S., Menon, S., Ponnanikajamideen, M., Ali, D., & Arunachalam, K. (2021). Anti-inflammatory and antimicrobial potential of Cissus quadrangularis-assisted copper oxide nanoparticles. Journal of Nanomaterials, 2021, 1-11.
https://doi.org/10.1155/2021/5742981
38. Menazea, A. A., & Ahmed, M. K. (2020). Silver and copper oxide nanoparticles-decorated graphene oxide via pulsed laser ablation technique: Preparation, characterization, and photoactivated antibacterial activity. Nano-Structures & Nano-Objects, 22, 100464.
https://doi.org/10.1016/j.nanoso.2020.100464
39. Beyene, A. M., Moniruzzaman, M., Karthikeyan, A., & Min, T. (2021). Curcumin nanoformulations with metal oxide nanomaterials for biomedical applications. Nanomaterials, 11(2), 460.
https://doi.org/10.3390/nano11020460
40. Chircov, C., Ștefan, R. E., Dolete, G., Andrei, A., Holban, A. M., Oprea, O. C., & Tihăuan, B. (2022). Dextran-coated iron oxide nanoparticles loaded with curcumin for antimicrobial therapies. Pharmaceutics, 14(5), 1057.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.