The Silent Sink: A Comprehensive Review of Microplastic Accumulation in Agricultural Soils and its Impact on Crop Physiology

Authors

  • Rifat Hayat Institute of Soil & Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan.
  • Ajmal Khan Institute of Soil & Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan.
  • Muhammad Awais Institute of Soil & Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan.
  • Muhammad Farhan Institute of Soil & Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan.
  • Umair Ahmad College of Resources and Environment, Huazhong Agricultural University, Wuhan, China.
  • Abdul Manan Institute of Soil & Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan.
  • Abdul Basit Institute of Soil & Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan.
  • Muhammad Talal Yasin Asad Institute of Soil & Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan.
  • Shah Nawaz College of Forestry, Henan Agricultural University, Zhengzhou, China.
  • Usama Hafeez College of Forestry, Henan Agricultural University, Zhengzhou, China.

DOI:

https://doi.org/10.70749/ijbr.v4i1.2838

Keywords:

Microplastics, Agricultural Soil, Crop Physiology, Rhizosphere, Food Security, Bioremediation.

Abstract

The abundance of microplastics (MP) in agricultural soils has launched a "silent sink" of pollution that endangers global food security. Originating from plastics from plasticulture, sewage sludge and irrigation water, MPs are accumulating in arable lands at alarming rates, leading to a fundamental change in the soil biophysical environment. This review performs a critical synthesis of the mechanisms of disruption of the soil-plant continuum by MPs. We highlight that MPs contribute to increasing the porosity and impair aggregate stability of soils, worsening erosion and drought stress. Chemically, they interrupt the cycle of nutrients in a way that the biodegradable plastics have a paradoxical effect of "carbon catabolite repression" that starves plants of nitrogen. Physiologically, below microscopic level value particles enter root tissues and cause oxidation stress, genotoxicity and hormonal imbalances which stunt root growth and reduce the rate of photosynthesis. Furthermore, MPs are vectors for heavy metals, antibiotics and pathogens, which help to transfer them into the food chain. We also point out a "biodegradable paradox", through which environmentally benign alternatives are potentially more phytotoxic than conventional plastics. Finally, we assess new approaches for remediation such as the potential of biochar amendment and microbial bioaugmentation approaches to restoration of soil health. This review highlights the importance of urgent standardization of monitoring and global governance for the reduction of the increasing threat of 'white pollution' in agroecosystems.

Downloads

Download data is not yet available.

References

Abbasi, S., Moore, F., & Keshavarzi, B. (2021). PET-microplastics as a vector for polycyclic aromatic hydrocarbons in a simulated plant rhizosphere zone. Environmental Technology & Innovation, 21, 101370.

https://doi.org/10.1016/j.eti.2021.101370

Athulya, P. A., Waychal, Y., Rodriguez-Seijo, A., Devalla, S., Doss, C. G. P., & Chandrasekaran, N. (2024). Microplastic interactions in the agroecosystems: Methodological advances and limitations in quantifying microplastics from agricultural soil. Environmental Geochemistry and Health, 46(3), 85.

https://doi.org/10.1007/s10653-023-01800-8

Azeem, I., Adeel, M., Ahmad, M. A., Shakoor, N., Jiangcuo, G. D., Azeem, K., Ishfaq, M., Shakoor, A., Ayaz, M., Xu, M., Rui, Y., Azeem, I., Adeel, M., Ahmad, M. A., Shakoor, N., Jiangcuo, G. D., Azeem, K., Ishfaq, M., Shakoor, A., … Rui, Y. (2021). Uptake and Accumulation of Nano/Microplastics in Plants: A Critical Review. Nanomaterials, 11(11).

https://www.mdpi.com/2079-4991/11/11/2935

Bello, F. A., Folorunsho, A. B., Chia, R. W., Lee, J.-Y., & Fasusi, S. A. (2025). Microplastics in agricultural soils: Sources, impacts on soil organisms, plants, and humans. Environmental Monitoring and Assessment, 197(4), 448.

https://doi.org/10.1007/s10661-025-13874-1

Bibi, N., Hashmi, M. A. N., Naz, F., Mahmood, T., Ikram, R., Daood, M., Bilal, M., Ahmad, M., & Nadeem, H. M. U. (2025). Modern Breeding Strategies for the Identification of Drought Tolerance in Wheat: A Comprehensive Review. Indus Journal of Bioscience Research, 3(10), 235–244.

https://doi.org/10.70749/ijbr.v3i10.2532

Boctor, J., Hoyle, F. C., Farag, M. A., Ebaid, M., Walsh, T., Whiteley, A. S., & Murphy, D. V. (2025). Microplastics and nanoplastics: Fate, transport, and governance from agricultural soil to food webs and humans. Environmental Sciences Europe, 37(1), 68.

https://doi.org/10.1186/s12302-025-01104-x

Bouaicha, O., Mimmo, T., Tiziani, R., Praeg, N., Polidori, C., Lucini, L., Vigani, G., Terzano, R., Sanchez-Hernandez, J. C., Illmer, P., Cesco, S., & Borruso, L. (2022). Microplastics make their way into the soil and rhizosphere: A review of the ecological consequences. Rhizosphere, 22, 100542.

https://doi.org/10.1016/j.rhisph.2022.100542

Castan, S., Henkel, C., Hüffer, T., & Hofmann, T. (2021). Microplastics and nanoplastics barely enhance contaminant mobility in agricultural soils. Communications Earth & Environment, 2(1), 193.

https://doi.org/10.1038/s43247-021-00267-8

Chen, Y., Li, Y., Liang, X., Lu, S., Ren, J., Zhang, Y., Han, Z., Gao, B., & Sun, K. (2024). Effects of microplastics on soil carbon pool and terrestrial plant performance. Carbon Research, 3(1), 37.

https://doi.org/10.1007/s44246-024-00124-1

Chen, Z., Carter, L. J., Banwart, S. A., Kay, P., Chen, Z., Carter, L. J., Banwart, S. A., & Kay, P. (2025). Microplastics in Soil–Plant Systems: Current Knowledge, Research Gaps, and Future Directions for Agricultural Sustainability. Agronomy, 15(7).

https://www.mdpi.com/2073-4395/15/7/1519

Deng, Y., Zeng, Z., Feng, W., Liu, J., Yang, F., Deng, Y., Zeng, Z., Feng, W., Liu, J., & Yang, F. (2024). Characteristics and Migration Dynamics of Microplastics in Agricultural Soils. Agriculture, 14(1).

https://www.mdpi.com/2077-0472/14/1/157

Dong, Y., Gao, M., Qiu, W., & Song, Z. (2021). Effect of microplastics and arsenic on nutrients and microorganisms in rice rhizosphere soil. Ecotoxicology and Environmental Safety, 211, 111899.

https://doi.org/10.1016/j.ecoenv.2021.111899

Elbasiouny, H., Mostafa, A. A., Zedan, A., Elbltagy, H. M., Dawoud, S. F. M., Elbanna, B. A., El-Shazly, S. A., El-Sadawy, A. A., Sharaf-Eldin, A. M., Darweesh, M., Ebrahim, A.-Z. E. E., Amer, S. M., Albeialy, N. O., Alkharsawey, D. S., Aeash, N. R., Abuomar, A. O., Hamd, R. E., Elbehiry, F., Elbasiouny, H., … Elbehiry, F. (2023). Potential Effect of Biochar on Soil Properties, Microbial Activity and Vicia faba Properties Affected by Microplastics Contamination. Agronomy, 13(1).

https://www.mdpi.com/2073-4395/13/1/149

Farooq, M. A., Hannan, F., Zou, H.-X., Zhou, W., Zhao, D.-S., Ayyaz, A., Ullah Asad, M. A., Ahmad, R., & Yan, X. (2025). Microplastics in soil–plant systems: Impacts on soil health, plant toxicity, and multiomics insights. Plant Cell Reports, 44(12), 283.

https://doi.org/10.1007/s00299-025-03664-x

Gao, S., Mu, X., Li, W., Wen, Y., Ma, Z., Liu, K., & Zhang, C. (2025). Invisible threats in soil: Microplastic pollution and its effects on soil health and plant growth. Environmental Geochemistry and Health, 47(5), 158.

https://doi.org/10.1007/s10653-025-02464-2

Guo, A., Pan, C., Su, X., Zhou, X., & Bao, Y. (2022). Combined effects of oxytetracycline and microplastic on wheat seedling growth and associated rhizosphere bacterial communities and soil metabolite profiles. Environmental Pollution, 302, 119046.

https://doi.org/10.1016/j.envpol.2022.119046

Han, Y., Teng, Y., Wang, X., Wen, D., Gao, P., Yan, D., & Yang, N. (2024). Biodegradable PBAT microplastics adversely affect pakchoi (Brassica chinensis L.) growth and the rhizosphere ecology: Focusing on rhizosphere microbial community composition, element metabolic potential, and root exudates. Science of The Total Environment, 912, 169048.

https://doi.org/10.1016/j.scitotenv.2023.169048

Hasan, M. M., & Tarannum, M. N. (2025). Adverse impacts of microplastics on soil physicochemical properties and crop health in agricultural systems. Journal of Hazardous Materials Advances, 17, 100528.

https://doi.org/10.1016/j.hazadv.2024.100528

Huang, F., Hu, J., Chen, L., Wang, Z., Sun, S., Zhang, W., Jiang, H., Luo, Y., Wang, L., Zeng, Y., & Fang, L. (2023). Microplastics may increase the environmental risks of Cd via promoting Cd uptake by plants: A meta-analysis. Journal of Hazardous Materials, 448, 130887.

https://doi.org/10.1016/j.jhazmat.2023.130887

Jia, L., Liu, L., Zhang, Y., Fu, W., Liu, X., Wang, Q., Tanveer, M., & Huang, L. (n.d.). Frontiers | Microplastic stress in plants: Effects on plant growth and their remediations.

https://doi.org/10.3389/fpls.2023.1226484

Lai, S., Fan, C., Yang, P., Fang, Y., Zhang, L., Jian, M., Dai, G., Liu, J., Yang, H., & Shen, L. (n.d.). Frontiers | Effects of different microplastics on the physicochemical properties and microbial diversity of rice rhizosphere soil.

https://doi.org/10.3389/fmicb.2024.1513890

Lebel, R., Farow, D., Crossman, J., & Proctor, C. (2025). The effects of biosolid microplastics on rhizosphere respiration of root exudates in Glycine max. Applied Soil Ecology, 206, 105851.

https://doi.org/10.1016/j.apsoil.2024.105851

Li, J., Yu, S., Yu, Y., & Xu, M. (2022). Effects of Microplastics on Higher Plants: A Review. Bulletin of Environmental Contamination and Toxicology, 109(2), 241–265.

https://doi.org/10.1007/s00128-022-03566-8

Li, X., Guo, F., Mi, Y., & Zhang, R. (2025). Aging increases the phytotoxicity of polyethylene and polypropylene to Lactuca Sativa L. compared to original microplastics. Journal of Environmental Management, 383, 125423.

https://doi.org/10.1016/j.jenvman.2025.125423

Lian, Y., Shi, R., Liu, J., Zeb, A., Wang, Q., Wang, J., Yu, M., Li, J., Zheng, Z., Ali, N., Bao, Y., & Liu, W. (2024). Effects of polystyrene, polyethylene, and polypropylene microplastics on the soil-rhizosphere-plant system: Phytotoxicity, enzyme activity, and microbial community. Journal of Hazardous Materials, 465, 133417.

https://doi.org/10.1016/j.jhazmat.2023.133417

Lwanga, E. H., Beriot, N., Corradini, F., Silva, V., Yang, X., Baartman, J., Rezaei, M., van Schaik, L., Riksen, M., & Geissen, V. (2022). Review of microplastic sources, transport pathways and correlations with other soil stressors: A journey from agricultural sites into the environment. Chemical and Biological Technologies in Agriculture, 9(1), 20.

https://doi.org/10.1186/s40538-021-00278-9

Maddela, N. R., Ramakrishnan, B., Kadiyala, T., Venkateswarlu, K., Megharaj, M., Maddela, N. R., Ramakrishnan, B., Kadiyala, T., Venkateswarlu, K., & Megharaj, M. (2023). Do Microplastics and Nanoplastics Pose Risks to Biota in Agricultural Ecosystems? Soil Systems, 7(1).

https://www.mdpi.com/2571-8789/7/1/19

Maity, S., Guchhait, R., Chatterjee, A., & Pramanick, K. (2021). Co-occurrence of co-contaminants: Cyanotoxins and microplastics, in soil system and their health impacts on plant – A comprehensive review. Science of The Total Environment, 794, 148752.

https://doi.org/10.1016/j.scitotenv.2021.148752

Maity, S., Guchhait, R., Sarkar, M. B., & Pramanick, K. (2022). Occurrence and distribution of micro/nanoplastics in soils and their phytotoxic effects: A review. Plant, Cell & Environment, 45(4), 1011–1028.

https://doi.org/10.1111/pce.14248

Meizoso-Regueira, T., Fuentes, J., Cusworth, S. J., & Rillig, M. C. (2024). Prediction of future microplastic accumulation in agricultural soils. Environmental Pollution, 359, 124587.

https://doi.org/10.1016/j.envpol.2024.124587

Mészáros, B., Veres, D. S., Nagyistók, L., Somogyi, A., Rosta, K., Herold, Z., Kukor, Z., & Valent, S. (n.d.). Frontiers | Pravastatin in preeclampsia: A meta-analysis and systematic review.

https://doi.org/10.3389/fmed.2022.1076372

Moeck, C., Davies, G., Krause, S., & Schneidewind, U. (2023). Microplastics and nanoplastics in agriculture—A potential source of soil and groundwater contamination? Grundwasser, 28(1), 23–35.

https://doi.org/10.1007/s00767-022-00533-2

Moreno-Jiménez, E., Leifheit, E. F., Plaza, C., Feng, L., Bergmann, J., Wulf, A., Lehmann, A., & Rillig, M. C. (2022). Effects of microplastics on crop nutrition in fertile soils and interaction with arbuscular mycorrhizal fungi. Journal of Sustainable Agriculture and Environment, 1(1), 66–72.

https://doi.org/10.1002/sae2.12006

Okeke, E. S., Chukwudozie, K. I., Addey, C. I., Okoro, J. O., Ezeorba, T. P. C., Atakpa, E. O., Okoye, C. O., & Nwuche, C. O. (n.d.). Micro and nanoplastics ravaging our agroecosystem: A review of occurrence, fate, ecological impacts, detection, remediation, and prospects.

https://www.cell.com/heliyon/abstract/S2405-8440(23)00503-0

Ren, X., Tang, J., Wang, L., & Liu, Q. (2021). Microplastics in soil-plant system: Effects of nano/microplastics on plant photosynthesis, rhizosphere microbes and soil properties in soil with different residues. Plant and Soil, 462(1), 561–576.

https://doi.org/10.1007/s11104-021-04869-1

Sa’adu, I., & Farsang, A. (2023). Plastic contamination in agricultural soils: A review. Environmental Sciences Europe, 35(1), 13.

https://doi.org/10.1186/s12302-023-00720-9

Sarfraz, U., Qian, Y., Yu, Q., Cao, Y., Jiang, X., Mahreen, N., Tao, R., Ma, Q., Zhu, M., Ding, J., Li, C., Guo, W., & Zhu, X. (n.d.). Frontiers | Microplastic effects on soil nitrogen storage, nitrogen emissions, and ammonia volatilization in relation to soil health and crop productivity: Mechanism and future consideration.

https://doi.org/10.3389/fpls.2025.1621542

Sun, H., Shi, Y., Zhao, P., Long, G., Li, C., Wang, J., Qiu, D., Lu, C., Ding, Y., Liu, L., & He, S. (2023). Effects of polyethylene and biodegradable microplastics on photosynthesis, antioxidant defense systems, and arsenic accumulation in maize (Zea mays L.) seedlings grown in arsenic-contaminated soils. Science of The Total Environment, 868, 161557.

https://doi.org/10.1016/j.scitotenv.2023.161557

Tariq, M., Iqbal, B., Khan, I., Khan, A. R., Jho, E. H., Salam, A., Zhou, H., Zhao, X., Li, G., & Du, D. (2024). Microplastic contamination in the agricultural soil—mitigation strategies, heavy metals contamination, and impact on human health: A review. Plant Cell Reports, 43(3), 65.

https://doi.org/10.1007/s00299-024-03162-6

Tian, L., Jinjin, C., Ji, R., Ma, Y., & Yu, X. (2022). Microplastics in agricultural soils: Sources, effects, and their fate. Current Opinion in Environmental Science & Health, 25, 100311.

https://doi.org/10.1016/j.coesh.2021.100311

Wang, B., Wang, P., Zhao, S., Shi, H., Zhu, Y., Teng, Y., Jiang, G., & Liu, S. (2023). Combined effects of microplastics and cadmium on the soil-plant system: Phytotoxicity, Cd accumulation and microbial activity. Environmental Pollution, 333, 121960.

https://doi.org/10.1016/j.envpol.2023.121960

Wang, F., Wang, Q., Adams, C. A., Sun, Y., & Zhang, S. (2022). Effects of microplastics on soil properties: Current knowledge and future perspectives. Journal of Hazardous Materials, 424, 127531.

https://doi.org/10.1016/j.jhazmat.2021.127531

Wang, F., Zhang, X., Zhang, Shuqi, Zhang, Shuwu, Adams, C. A., Sun, Y., Wang, F., Zhang, X., Zhang, Shuqi, Zhang, Shuwu, Adams, C. A., & Sun, Y. (2020). Effects of Co-Contamination of Microplastics and Cd on Plant Growth and Cd Accumulation. Toxics, 8(2).

https://www.mdpi.com/2305-6304/8/2/36

Xiang, P., Liao, W., Xiong, Z., Xiao, W., Luo, Y., Peng, L., Zou, L., Zhao, C., & Li, Q. (2024). Effects of polystyrene microplastics on the agronomic traits and rhizosphere soil microbial community of highland barley. Science of The Total Environment, 907, 167986.

https://doi.org/10.1016/j.scitotenv.2023.167986

Xu, Z., Zhang, Y., Lin, L., Wang, L., Sun, W., Liu, C., Yu, G., Yu, J., Lv, Y., Chen, J., Chen, X., Fu, L., & Wang, Y. (2022). Toxic effects of microplastics in plants depend more by their surface functional groups than just accumulation contents. Science of The Total Environment, 833, 155097.

https://doi.org/10.1016/j.scitotenv.2022.155097

Yadav, V., Dhanger, S., & Sharma, J. (2022). Microplastics accumulation in agricultural soil: Evidence for the presence, potential effects, extraction, and current bioremediation approaches. Journal of Applied Biology & Biotechnology, 38–47.

https://doi.org/10.7324/jabb.2022.10s204

Yang, L., Shen, P., Liang, H., & Wu, Q. (2024). Biochar relieves the toxic effects of microplastics on the root-rhizosphere soil system by altering root expression profiles and microbial diversity and functions. Ecotoxicology and Environmental Safety, 271, 115935.

https://doi.org/10.1016/j.ecoenv.2024.115935

Yang, W., Cheng, P., Adams, C. A., Zhang, S., Sun, Y., Yu, H., & Wang, F. (2021). Effects of microplastics on plant growth and arbuscular mycorrhizal fungal communities in a soil spiked with ZnO nanoparticles. Soil Biology and Biochemistry, 155, 108179.

https://doi.org/10.1016/j.soilbio.2021.108179

Yu, Z., Song, S., Xu, X., Ma, Q., & Lu, Y. (2021). Sources, migration, accumulation and influence of microplastics in terrestrial plant communities. Environmental and Experimental Botany, 192, 104635.

https://doi.org/10.1016/j.envexpbot.2021.104635

Zhang, Y., Cai, C., Gu, Y., Shi, Y., & Gao, X. (2022). Microplastics in plant-soil ecosystems: A meta-analysis. Environmental Pollution, 308, 119718.

https://doi.org/10.1016/j.envpol.2022.119718

Zhang, Z., Cui, Q., Chen, L., Zhu, X., Zhao, S., Duan, C., Zhang, X., Song, D., & Fang, L. (2022). A critical review of microplastics in the soil-plant system: Distribution, uptake, phytotoxicity and prevention. Journal of Hazardous Materials, 424, 127750.

https://doi.org/10.1016/j.jhazmat.2021.127750

Zhou, J., Gui, H., Banfield, C. C., Wen, Y., Zang, H., Dippold, M. A., Charlton, A., & Jones, D. L. (2021). The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function. Soil Biology and Biochemistry, 156, 108211.

https://doi.org/10.1016/j.soilbio.2021.108211

Zhu, J., Liu, S., Wang, H., Wang, D., Zhu, Y., Wang, J., He, Y., Zheng, Q., & Zhan, X. (2022). Microplastic particles alter wheat rhizosphere soil microbial community composition and function. Journal of Hazardous Materials, 436, 129176.

https://doi.org/10.1016/j.jhazmat.2022.129176

Downloads

Published

2026-01-30

How to Cite

Hayat, R., Khan, A., Muhammad Awais, Muhammad Farhan, Ahmad, U., Abdul Manan, Abdul Basit, Yasin Asad, M. T., Shah Nawaz, & Hafeez, U. (2026). The Silent Sink: A Comprehensive Review of Microplastic Accumulation in Agricultural Soils and its Impact on Crop Physiology. Indus Journal of Bioscience Research, 4(1), 90-102. https://doi.org/10.70749/ijbr.v4i1.2838