Investigating the Role of Physical Activity and Exercise in Preventing Obesity and Type 2 Diabetes: A Mixed-Methods Approach

Authors

  • Syed Abdal Hussain Shah Department of Medical Lab Technology, The University of Haripur, KP, Pakistan.
  • Haris Riaz Khan IAHS, Wah Medical College, (P.O.F Hospital), Wah Cantt, Rawalpindi, Punjab, Pakistan. https://orcid.org/0009-0001-8746-0434
  • Tahira Sher Afghan Department of Medical Lab Technology, The University of Haripur, KP, Pakistan.
  • Noman Ahmed Department of Medical Lab Technology, The University of Haripur, KP, Pakistan.
  • Anas Saeed Department of Medical Lab Technology, Abbottabad University of Science and Technology, KP, Pakistan.
  • Muhammad Najeeb Ullah Department of Medical Lab Technology, The University of Haripur, KP, Pakistan.
  • Nayyab Iftikhar Department of Medical Lab Technology, The University of Haripur, KP, Pakistan.
  • Beena Gul Department of Medical Lab Technology, The University of Haripur, KP, Pakistan.
  • Misbah Bibi Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i2.337

Keywords:

Physical Activity, Exercise, Obesity, Type 2 Diabetes Mellitus, Mixed-Methods Approach

Abstract

Objective: This review aims to synthesize recent research on the impact of exercise and physical activity in preventing T2DM and obesity, using a mixed-methods approach. Methods: A thorough literature review was conducted, incorporating findings from 59 recent studies. The review combined quantitative data on physiological mechanisms, exercise modalities, and intensities, with qualitative insights into behavioral and psychological factors influencing exercise adherence. Results: The review elucidates how exercise enhances metabolic health through improved insulin sensitivity, glucose metabolism, and fat reduction. Different forms and intensities of physical activity were shown to have varied effects on metabolic health, with both aerobic and resistance exercises contributing to overall benefits. Qualitative research highlighted individuals' attitudes, motivations, and barriers to maintaining regular physical activity. Factors such as personal goals, social support, and psychological barriers were identified as critical determinants of exercise adherence. Discussion: The findings emphasize the need for targeted interventions and policies to promote regular physical activity. Strategies should address both physiological benefits and behavioral challenges, incorporating personalized approaches to enhance adherence and efficacy. Conclusion: Regular exercise plays a crucial role in reducing Type 2 Diabetes Mellitus (T2DM) and obesity while improving metabolic health. A mixed-methods approach combining physiological and qualitative research enhances understanding of these interactions. Exercise promotes glucose absorption by translocating GLUT4 to the cell surface and increases insulin sensitivity in skeletal muscles. It reduces hepatic glucose production, enhances mitochondrial biogenesis, and improves oxidative capacity. Additionally, exercise stimulates lipolysis, lowers triglycerides and LDL cholesterol, and increases HDL cholesterol. It also reduces chronic inflammation by modulating cytokines and adipokines, ultimately improving insulin sensitivity and overall metabolic function, making it essential for diabetes management.

Downloads

Download data is not yet available.

References

Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martin, C. (2020). Pathophysiology of Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 21(17), 1–34. https://doi.org/10.3390/ijms21176275

Leitzmann, M. (2017). Physical activity, sedentary behaviour, and obesity (I. Romieu, L. Dossus, & W. C. Willett, Eds.). PubMed; International Agency for Research on Cancer. https://www.ncbi.nlm.nih.gov/books/NBK565813/

Pollack, A. (2013, June 18). A.M.A. Recognizes Obesity as a Disease. Nyti.ms; The New York Times. http://nyti.ms/1Guko03

McDonald, M. E., & Bender, D. P. (2019). Endometrial Cancer: Obesity, Genetics, and Targeted Agents. Obstetrics and Gynecology Clinics of North America, 46(1), 89–105. https://doi.org/10.1016/j.ogc.2018.09.006

Wells, J. C. K. (2012). The evolution of human adiposity and obesity: where did it all go wrong? Disease Models & Mechanisms, 5(5), 595–607. https://doi.org/10.1242/dmm.009613

Zimmet, P., Alberti, K. G., & Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature, 414(6865), 782–787. https://doi.org/10.1038/414782a

The Emerging Risk Factors Collaboration. (2010). Diabetes mellitus, Fasting Blood Glucose concentration, and Risk of Vascular disease: a Collaborative meta-analysis of 102 Prospective Studies. The Lancet, 375(9733), 2215–2222. https://doi.org/10.1016/s0140-6736(10)60484-9

Huang, Y., Cai, X., Mai, W., Li, M., & Hu, Y. (2016). Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ, i5953. https://doi.org/10.1136/bmj.i5953

Suh, S., Paik, I., & Jacobs, K. A. (2007). Regulation of blood glucose homeostasis during prolonged exercise. Molecules and Cells, 23(3), 272-279. https://doi.org/10.1016/s1016-8478(23)10717-5

Zierath, J. R., He, L., Gumà, A., Wahlström, E. O., Klip, A., & Wallberg-Henriksson, H. (1996). Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia, 39(10). https://doi.org/10.1007/bf02658504

Bajpeyi, S., Tanner, C. J., Slentz, C. A., Duscha, B. D., McCartney, J. S., Hickner, R. C., Kraus, W. E., & Houmard, J. A. (2009). Effect of exercise intensity and volume on persistence of insulin sensitivity during training cessation. Journal of Applied Physiology, 106(4), 1079-1085. https://doi.org/10.1152/japplphysiol.91262.2008

Kang, J., Robertson, R. J., Hagberg, J. M., Kelley, D. E., Goss, F. L., Dasilva, S. G., Suminski, R. R., & Utter, A. C. (1996). Effect of exercise intensity on glucose and insulin metabolism in obese individuals and obese NIDDM patients. Diabetes Care, 19(4), 341-349. https://doi.org/10.2337/diacare.19.4.341

Magalhães, J. P., Melo, X., Correia, I. R., Ribeiro, R. T., Raposo, J., Dores, H., Bicho, M., & Sardinha, L. B. (2019). Effects of combined training with different intensities on vascular health in patients with type 2 diabetes: A 1-year randomized controlled trial. Cardiovascular Diabetology, 18(1). https://doi.org/10.1186/s12933-019-0840-2

Naylor, L. H., Davis, E. A., Kalic, R. J., Paramalingam, N., Abraham, M. B., Jones, T. W., & Green, D. J. (2016). Exercise training improves vascular function in adolescents with type 2 diabetes. Physiological Reports, 4(4), e12713. https://doi.org/10.14814/phy2.12713

MOTIANI, K. K., COLLADO, M. C., ESKELINEN, J., VIRTANEN, K. A., LÖYTTYNIEMI, E., SALMINEN, S., NUUTILA, P., KALLIOKOSKI, K. K., & HANNUKAINEN, J. C. (2019). Exercise training modulates gut microbiota profile and improves Endotoxemia. Medicine & Science in Sports & Exercise, 52(1), 94-104. https://doi.org/10.1249/mss.0000000000002112

Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., & Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes Federation diabetes atlas, 9th edition. Diabetes Research and Clinical Practice, 157, 107843. https://doi.org/10.1016/j.diabres.2019.107843

CDC. (2020, February 11). National Diabetes Statistics Report, 2020. Centers for Disease Control and Prevention. https://www.cdc.gov/diabetes/library/features/diabetes-stat-report.html

Addendum. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2021. Diabetes care 2021;44(Suppl. 1):S15–S33. (2021). Diabetes Care, 44(9), 2182-2182. https://doi.org/10.2337/dc21-ad09

Ma, R. C., & Tong, P. C. (2024). Epidemiology of type 2 diabetes. Textbook of Diabetes, 55-74. https://doi.org/10.1002/9781119697473.ch5

Dysted, M. P, Esztergályos, B, & Gautam S, et al. (2021). IDF Diabetes Atlas, 10th Edition. International Diabetes Federation: Bruxelas, Belgium, 1-141.

Aguiree F, Brown A, Cho NH, et al. (2013). IDF Diabetes Atlas, 6th Edition. Brussels: International Diabetes Federation; 2013.

Pakistan Ranks 3rd in Prevalence of Diabetes in World After China and India. The News. 2022. https://www.thenews.com.pk/print/899124-pakistan-ranks-3rd-in-prevalence-of-diabetes-in-world-after-china-and-india

Meo, S. A., Zia, I., Bukhari, I. A., & Arain, S. A. (2016). Type 2 diabetes mellitus in Pakistan: Current prevalence and future forecast. JPMA. The Journal of the Pakistan Medical Association, 66(12), 1637-1642. https://europepmc.org/article/med/27924966

Aamir, A. H., Ul-Haq, Z., Mahar, S. A., Qureshi, F. M., Ahmad, I., Jawa, A., Sheikh, A., Raza, A., Fazid, S., Jadoon, Z., Ishtiaq, O., Safdar, N., Afridi, H., & Heald, A. H. (2019). Diabetes prevalence survey of Pakistan (DPS-PAK): Prevalence of type 2 diabetes mellitus and prediabetes using HbA1c: a population-based survey from Pakistan. BMJ Open, 9(2), e025300. https://doi.org/10.1136/bmjopen-2018-025300

9th edition | IDF Diabetes Atlas. (2019). IDF Diabetes Atlas. https://diabetesatlas.org/atlas/ninth-edition/

Lobstein T, Brinsden H, Neveux M. (2022). World Obesity Atlas 2022. https://www.worldobesityday.org/assets/downloads/World_Obesity_Atlas_2022_WEB.pdf

Nimptsch, K, & Pischon, T. (2024). Epidemiology of Obesity. In: Handbook of Eating Disorders and Obesity. Berlin, Heidelberg: Springer Berlin Heidelberg, 425-430.

Furler, S. M., Gan, S. K., Poynten, A. M., Chisholm, D. J., Campbell, L. V., & Kriketos, A. D. (2006). Relationship of Adiponectin with Insulin Sensitivity in Humans, Independent of Lipid Availability. Obesity, 14(2), 228–234. https://doi.org/10.1038/oby.2006.29

Kazmi, T., Nagi, L. F., Iqbal, S. P., Razzak, S., Hassnain, S., Khan, S., & Shahid, N. (2022). Relationship between physical inactivity and obesity in the urban slums of Lahore. Cureus. https://doi.org/10.7759/cureus.23719

Bird, S. R., & Hawley, J. A. (2017). Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport & Exercise Medicine, 2(1), e000143. https://doi.org/10.1136/bmjsem-2016-000143

Wang, T., Wang, J., Hu, X., Huang, X., & Chen, G. (2020). Current understanding of glucose transporter 4 expression and functional mechanisms. World Journal of Biological Chemistry, 11(3), 76-98. https://doi.org/10.4331/wjbc.v11.i3.76

Civil, T., Özen, G., & Demirbilek, H. (2021). Intensive Physical Exercise And Ketosis In Type 1 Diabetes: Literature Review On A Case After Covid-19 Quarantine. ABOUT THIS SPECIAL ISSUE, 279.

Saltiel, A. R. (2021). Insulin signaling in health and disease. The Journal of clinical investigation, 131(1). https://www.jci.org/articles/view/142241

Warner, S. O., Yao, M. V., Cason, R. L., & Winnick, J. J. (2020). Exercise-induced improvements to whole body glucose metabolism in type 2 diabetes: The essential role of the liver. Frontiers in Endocrinology, 11. https://doi.org/10.3389/fendo.2020.00567

Yang, Q., Vijayakumar, A., & Kahn, B. B. (2018). Metabolites as regulators of insulin sensitivity and metabolism. Nature Reviews Molecular Cell Biology, 19(10), 654-672. https://doi.org/10.1038/s41580-018-0044-8

Hatting, M., Tavares, C. D., Sharabi, K., Rines, A. K., & Puigserver, P. (2017). Insulin regulation of gluconeogenesis. Annals of the New York Academy of Sciences, 1411(1), 21-35. https://doi.org/10.1111/nyas.13435

Pi, A., Villivalam, S. D., & Kang, S. (2023). The molecular mechanisms of fuel utilization during exercise. Biology, 12(11), 1450. https://doi.org/10.3390/biology12111450

Herić, A., Silajdžić, A., & Zubčević, T. (2024). Advantages and disadvantages of mitochondrial mechanism (mitophagy) for cancer treatment. World Journal of Biology Pharmacy and Health Sciences, 18(2), 064-072. https://doi.org/10.30574/wjbphs.2024.18.1.0180

Ding, W., Yang, X., Lai, K., Jiang, Y., & Liu, Y. (2024). The potential of therapeutic strategies targeting mitochondrial biogenesis for the treatment of insulin resistance and type 2 diabetes mellitus. Archives of Pharmacal Research, 47(3), 219-248. https://doi.org/10.1007/s12272-024-01490-5

Li, J., Li, Y., Atakan, M. M., Kuang, J., Hu, Y., Bishop, D. J., & Yan, X. (2020). The molecular adaptive responses of skeletal muscle to high-intensity exercise/Training and hypoxia. Antioxidants, 9(8), 656. https://doi.org/10.3390/antiox9080656

Shaito, A., Al-Mansoob, M., Ahmad, S., Haider, M. Z., Eid, A. H., Posadino, A. M., Pintus, G., & Giordo, R. (2023). Resveratrol-mediated regulation of mitochondria biogenesis-associatedpathways in neurodegenerative diseases: Molecular insights and PotentialTherapeutic applications. Current Neuropharmacology, 21(5), 1184-1201. https://doi.org/10.2174/1570159x20666221012122855

Alvarez-Jimenez, L., Moreno-Cabañas, A., Morales-Palomo, F., Ortega, J. F., & Mora-Rodriguez, R. (2023). Chronic Statin treatment does not impair exercise Lipolysis or fat oxidation in exercise-trained individuals with obesity and Dyslipidemia. International Journal of Sport Nutrition and Exercise Metabolism, 33(3), 151-160. https://doi.org/10.1123/ijsnem.2022-0175

Horowitz, J. F. (2022). Adipose tissue lipid metabolism during exercise. Physiology in Health and Disease, 137-159. https://doi.org/10.1007/978-3-030-94305-9_7

Barone Gibbs, B., Hivert, M., Jerome, G. J., Kraus, W. E., Rosenkranz, S. K., Schorr, E. N., Spartano, N. L., & Lobelo, F. (2021). Physical activity as a critical component of first-line treatment for elevated blood pressure or cholesterol: Who, what, and how?: A scientific statement from the American Heart Association. Hypertension, 78(2). https://doi.org/10.1161/hyp.0000000000000196

ONU, I., IORDAN, D., CODREANU, C. M., MATEI Daniela, & GALACTION Anca-Irina. (2021). Anti-inflammatory effects of exercise training. A systematic review. Balneo and PRM Research Journal, (Vol.12, no.4), 418-425. https://doi.org/10.12680/balneo.2021.473

Niculet, E., Chioncel, V., Elisei, A., Miulescu, M., Buzia, O., Nwabudike, L., Craescu, M., Draganescu, M., Bujoreanu, F., Marinescu, E., Arbune, M., Radaschin, D., Bobeica, C., Nechita, A., & Tatu, A. (2021). Multifactorial expression of IL 6 with update on COVID 19 and the therapeutic strategies of its blockade (Review). Experimental and Therapeutic Medicine, 21(3). https://doi.org/10.3892/etm.2021.9693

Calcaterra, V., Vandoni, M., Rossi, V., Berardo, C., Grazi, R., Cordaro, E., Tranfaglia, V., Carnevale Pellino, V., Cereda, C., & Zuccotti, G. (2022). Use of physical activity and exercise to reduce inflammation in children and adolescents with obesity. International Journal of Environmental Research and Public Health, 19(11), 6908. https://doi.org/10.3390/ijerph19116908

Gonzalez-Gil, A. M., & Elizondo-Montemayor, L. (2020). The role of exercise in the interplay between Myokines, Hepatokines, Osteokines, Adipokines, and modulation of inflammation for energy substrate redistribution and fat mass loss: A review. Nutrients, 12(6), 1899. https://doi.org/10.3390/nu12061899

Fadaei, R. (2023). Adipokines as a link between adipose tissue with inflammation and insulin resistance in cardiometabolic diseases. Acta Biochimica Iranica. https://doi.org/10.18502/abi.v1i3.14546

Clemente-Suárez, V. J., Redondo-Flórez, L., Beltrán-Velasco, A. I., Martín-Rodríguez, A., Martínez-Guardado, I., Navarro-Jiménez, E., Laborde-Cárdenas, C. C., & Tornero-Aguilera, J. F. (2023). The role of Adipokines in health and disease. Biomedicines, 11(5), 1290. https://doi.org/10.3390/biomedicines11051290

Nauck, M. A., & Müller, T. D. (2023). Incretin hormones and type 2 diabetes. Diabetologia, 66(10), 1780-1795. https://doi.org/10.1007/s00125-023-05956-x

Paternoster, S., & Falasca, M. (2018). Dissecting the physiology and pathophysiology of glucagon-like peptide-1. Frontiers in Endocrinology, 9. https://doi.org/10.3389/fendo.2018.00584

Liu, X., & Gilbert, R. G. (2024). Normal and abnormal glycogen structure – A review. Carbohydrate Polymers, 338, 122195. https://doi.org/10.1016/j.carbpol.2024.122195

Von Ah Morano, A. E., Dorneles, G. P., Peres, A., & Lira, F. S. (2019). The role of glucose homeostasis on immune function in response to exercise: The impact of low or higher energetic conditions. Journal of Cellular Physiology, 235(4), 3169-3188. https://doi.org/10.1002/jcp.29228

Atakan, M. M., Li, Y., Koşar, Ş. N., Turnagöl, H. H., & Yan, X. (2021). Evidence-based effects of high-intensity interval training on exercise capacity and health: A review with historical perspective. International Journal of Environmental Research and Public Health, 18(13), 7201. https://doi.org/10.3390/ijerph18137201

Izquierdo, M., Merchant, R., Morley, J., Anker, S., Aprahamian, I., Arai, H., Aubertin-Leheudre, M., Bernabei, R., Cadore, E., Cesari, M., Chen, L., De Souto Barreto, P., Duque, G., Ferrucci, L., Fielding, R., García-Hermoso, A., Gutiérrez-Robledo, L., Harridge, S., Kirk, B., … Singh, M. F. (2021). International exercise recommendations in older adults (ICFSR): Expert consensus guidelines. The Journal of nutrition, health and aging, 25(7), 824-853. https://doi.org/10.1007/s12603-021-1665-8

Collado-Mateo, D., Lavín-Pérez, A. M., Peñacoba, C., Del Coso, J., Leyton-Román, M., Luque-Casado, A., Gasque, P., Fernández-del-Olmo, M. Á., & Amado-Alonso, D. (2021). Key factors associated with adherence to physical exercise in patients with chronic diseases and older adults: An umbrella review. International Journal of Environmental Research and Public Health, 18(4), 2023. https://doi.org/10.3390/ijerph18042023

Downloads

Published

2025-02-28

How to Cite

Investigating the Role of Physical Activity and Exercise in Preventing Obesity and Type 2 Diabetes: A Mixed-Methods Approach. (2025). Indus Journal of Bioscience Research, 3(2), 525-533. https://doi.org/10.70749/ijbr.v3i2.337