Silkworm Interaction and Its Role in Resistance to Bombyx Mori Nuclear Polyhedrosis Virus: A Genetic and Molecular Review

Authors

  • Usama Hanif Institute of Biochemistry and Biotechnology (IBBT), University of Veterinary and Animal Sciences (UVAS), Lahore, Punjab, Pakistan.
  • Saba Naveed Institute of Biochemistry and Biotechnology (IBBT), University of Veterinary and Animal Sciences (UVAS), Lahore, Punjab, Pakistan.
  • Noor Ul Huda Institute of Biochemistry and Biotechnology (IBBT), University of Veterinary and Animal Sciences (UVAS), Lahore, Punjab, Pakistan.
  • Jafar Ebrahim Khail Institute of Biochemistry and Biotechnology (IBBT), University of Veterinary and Animal Sciences (UVAS), Lahore, Punjab, Pakistan.
  • Muhammad Hasnat Ahmad Institute of Biochemistry and Biotechnology (IBBT), University of Veterinary and Animal Sciences (UVAS), Lahore, Punjab, Pakistan.
  • Muhammad Haroon Riphah International University, Lahore, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i2.603

Keywords:

Bombyx Mori, Nucleopolyhedrovirus, Host-Pathogen Interactions, Genetic Resistance, Silkworm Immunity, Transgenic Silkworms, Innate Immunity, RNA Interference, Metabolic Pathways, Antiviral Defense

Abstract

Background: Bombyx mori nucleopolyhedrovirus (BmNPV) is a significant pathogen affecting silkworm populations, leading to substantial economic losses in sericulture. Understanding the genetic and molecular mechanisms underlying host resistance is crucial for developing effective control strategies. Objective: This review aimed to synthesize current knowledge on the genetic and molecular interactions between Bombyx mori and BmNPV, identifying key resistance mechanisms and potential strategies for enhancing antiviral defenses. Methods: A narrative review was conducted using literature from PubMed, Scopus, Web of Science, and Google Scholar. Studies focusing on silkworm immunity, genetic resistance, metabolic pathways, and transgenic approaches were analyzed. Data were synthesized to identify common resistance-associated genes and molecular pathways. Results: Resistance to BmNPV was found to be regulated by dominant and minor genes, metabolic alterations, and immune pathways such as Toll, IMD, and RNA interference. Transgenic silkworms overexpressing antiviral genes demonstrated enhanced resistance without compromising economic traits. Mortality analysis highlighted strain-specific differences in susceptibility. Conclusion: Genetic and metabolic resistance mechanisms play a critical role in BmNPV defense, with transgenic modifications offering a viable strategy for disease control. Findings provide insights into viral resistance models relevant to both sericulture and human virology.

Downloads

Download data is not yet available.

References

Xu, H., & O'Brochta, D. A. (2015). Advanced technologies for genetically manipulating the silkwormBombyx mori, a model Lepidopteran insect. Proceedings of the Royal Society B: Biological Sciences, 282(1810), 20150487. https://doi.org/10.1098/rspb.2015.0487

Hăbeanu, M., Gheorghe, A., & Mihalcea, T. (2023). Silkworm bombyx Mori—Sustainability and economic opportunity, particularly for Romania. Agriculture, 13(6), 1209. https://doi.org/10.3390/agriculture13061209

Chen, K., & Lu, Z. (2018). Immune responses to bacterial and fungal infections in the silkworm, bombyx Mori. Developmental & Comparative Immunology, 83, 3-11. https://doi.org/10.1016/j.dci.2017.12.024

Sharma, A., Sharma, P., Thakur, J., Murali, S., & Bali, K. (2020). Viral diseases of mulberry silkworm, Bombyx mori L.-A review. Journal of Pharmacognosy and Phytochemistry, 9(2S), 415-423. https://www.phytojournal.com/special-issue?year=2020&vol=9&issue=2S&ArticleId=11743

Woo, S., & Ahn, J. (2006). Influence of polyhedrin and host cell on the polyhedra morphology of Autographa californica nucleopolyhedrovirus. Applied Entomology and Zoology, 41(3), 435-443. https://doi.org/10.1303/aez.2006.435

Yu, L., Cao, Y., Ge, S., Xu, A., Qian, H., & Li, G. (2022). Identification of key genes involved in resistance to early stage of BmNPV infection in silkworms. Viruses, 14(11), 2405. https://doi.org/10.3390/v14112405

Ouyang, G., Qian, H., Sun, J., Yang, R., Gui, T., Wang, W., Liu, Q., & Chen, A. (2023). Proteomics analysis to explore the resistance genes of silkworm to bombyx Mori nuclear Polyhedrosis virus. Genes, 15(1), 59. https://doi.org/10.3390/genes15010059

Lü, P., Zhang, R., Yang, Y., Tang, M., Chen, K., & Pan, Y. (2024). Transcriptome analysis indicates the mechanisms of BmNPV resistance in bombyx Mori midgut. Journal of Invertebrate Pathology, 204, 108103. https://doi.org/10.1016/j.jip.2024.108103

Kasamatsu, H., & Nakanishi, A. (1998). How do animal DNA viruses get to the nucleus? Annual Review of Microbiology, 52(1), 627-686. https://doi.org/10.1146/annurev.micro.52.1.627

Hu, Z., Zhu, F., & Chen, K. (2023). The mechanisms of silkworm resistance to the Baculovirus and antiviral breeding. Annual Review of Entomology, 68(1), 381-399. https://doi.org/10.1146/annurev-ento-120220-112317

Fan, Y., Andoh, V., & Chen, L. (2023). Multi-omics study and ncRNA regulation of anti-bmnpv in silkworms, bombyx Mori: An update. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1123448

Kang, X., Wang, Y., Liang, W., Tang, X., Zhang, Y., Wang, L., Zhao, P., & Lu, Z. (2021). Bombyx Mori nucleopolyhedrovirus downregulates transcription factor BmFoxO to elevate virus infection. Developmental & Comparative Immunology, 116, 103904. https://doi.org/10.1016/j.dci.2020.103904

Jiang, L. (2021). Insights into the antiviral pathways of the silkworm bombyx Mori. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.639092

Zhou, W., Song, D., Chen, H., Tang, Q., Yu, Q., Huo, S., Liu, X., Chen, K., & Zhu, F. (2022). Identification of key metabolic pathways reprogrammed by BmNPV in silkworm bombyx Mori. Journal of Invertebrate Pathology, 190, 107736. https://doi.org/10.1016/j.jip.2022.107736

Jiang, L., Cheng, T., Zhao, P., Yang, Q., Wang, G., Jin, S., Lin, P., Xiao, Y., & Xia, Q. (2012). Resistance to BmNPV via Overexpression of an exogenous gene controlled by an inducible promoter and enhancer in transgenic silkworm, bombyx Mori. PLoS ONE, 7(8), e41838. https://doi.org/10.1371/journal.pone.0041838

Tsubota, T., Uchino, K., Suzuki, T. K., Tanaka, H., Kayukawa, T., Shinoda, T., & Sezutsu, H. (2014). Identification of a Novel Strong and Ubiquitous Promoter/Enhancer in the Silkworm Bombyx Mori. G3 (Bethesda). G3 Genes|Genomes|Genetics, 4(7), 1347-1357. https://doi.org/10.1534/g3.114.011643

Liu, Y., Chen, D., Zhang, X., Chen, S., Yang, D., Tang, L., Yang, X., Wang, Y., Luo, X., Wang, M., Hu, Z., & Huang, Y. (2021). Construction of baculovirus-inducible CRISPR/Cas9 antiviral system targeting BmNPV in bombyx Mori. Viruses, 14(1), 59. https://doi.org/10.3390/v14010059

Subbaiah, E. V., Royer, C., Kanginakudru, S., Satyavathi, V. V., Babu, A. S., Sivaprasad, V., Chavancy, G., DaRocha, M., Jalabert, A., Mauchamp, B., Basha, I., Couble, P., & Nagaraju, J. (2013). Engineering silkworms for resistance to Baculovirus through multigene RNA interference. Genetics, 193(1), 63-75. https://doi.org/10.1534/genetics.112.144402

Zhou, Y., Wu, J., Lin, F., Chen, N., Yuan, S., Ding, L., Gao, L., & Hang, B. (2015). Rapid detection of bombyx Mori nucleopolyhedrovirus (BmNPV) by loop-mediated isothermal amplification assay combined with a lateral flow dipstick method. Molecular and Cellular Probes, 29(6), 389-395. https://doi.org/10.1016/j.mcp.2015.09.003

Zhang, S., Zhu, L., Yu, D., You, L., Wang, J., Cao, H., Liu, Y., Wang, Y., Kong, X., Toufeeq, S., & Xu, J. (2020). Identification and functional analysis of bmnpv-interacting proteins from bombyx Mori (Lepidoptera) larval Midgut based on subcellular protein levels. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01481

Mondal, R., Shaw, S., Mandal, P., Dam, P., & Mandal, A. K. (2024). Recent advances in the biosensors application for reviving infectious disease management in silkworm model: A new way to combat microbial pathogens. Archives of Microbiology, 206(5). https://doi.org/10.1007/s00203-024-03933-5

Feng, M., Xia, J., Fei, S., Peng, R., Wang, X., Zhou, Y., Wang, P., Swevers, L., & Sun, J. (2021). Identification of silkworm Hemocyte subsets and analysis of their response to Baculovirus infection based on single-cell RNA sequencing. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.645359

Xu, X., Du, X., Chen, J., Yao, L., He, X., Zhu, L., Yu, S., Tojiddinovich, V. S., Nasirillayev, B. U., Adilovna, I. D., Khasanboy ugl, K. S., & Wang, Y. (2024). Genetic diversity and differentiation of silkworm (Bombyx Mori) local Germplasm resources in China and Uzbekistan. Insects, 15(12), 1020. https://doi.org/10.3390/insects15121020

Kômoto, N., & Tomita, S. (2020). Risk assessment of transgenic silkworms. Topics in Biodiversity and Conservation, 223-237. https://doi.org/10.1007/978-3-030-53183-6_10

Jiang, L., Wang, Y., Guo, H., Sun, Q., Xie, E., Liuli, H., Li, Q., & Xia, Q. (2020). Toxicological evaluation of transgenic silkworms. Toxicology Research, 9(6), 845-853. https://doi.org/10.1093/toxres/tfaa089

Downloads

Published

2025-02-07

How to Cite

Silkworm Interaction and Its Role in Resistance to Bombyx Mori Nuclear Polyhedrosis Virus: A Genetic and Molecular Review. (2025). Indus Journal of Bioscience Research, 3(2), 30-36. https://doi.org/10.70749/ijbr.v3i2.603