Characterization of Potential Virus Resistance Genes in Different Crops Through In-silico Approaches

Authors

  • Mehar Ali Raza Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan.
  • Rida Zaib Department of Microbiology, Faculty of Science and Technology, University of Central Punjab, Lahore, Punjab, Pakistan.
  • Aimen Khalid Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan.
  • Amna Afzal Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan.
  • Faheem Kanwal Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Punjab, Pakistan.
  • Muhammad Azmat Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Punjab, Pakistan.
  • Imran Zafar Department of Biochemistry and Biotechnology, The University of Faisalabad (TUF), Faisalabad, Punjab, Pakistan. https://orcid.org/0000-0002-9246-0850
  • Shaista Shafiq Department of Biochemistry and Biotechnology, The University of Faisalabad (TUF), Faisalabad, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i2.648

Keywords:

Cotton Leaf Curl Virus (CLCuV), Resistance Gene Analogs (RGAs), Gossypium Hirsutum, Molecular Modelling, Bioinformatics Analysis

Abstract

Begomoviruses, particularly the cotton leaf curl virus (CLCuV), pose significant threats to global agriculture, especially cotton production. This study identified five resistance gene analogs (RGAs)—KT250635, KT886994, KT633945, KT885194, and KT633946—in Gossypium hirsutum and evaluated their potential against CLCuV using bioinformatics and molecular modeling approaches. Structural validation through Ramachandran plot analysis demonstrated that KT250635 and KT886994 had 92.6% residues in the most favored regions, while KT633945 and KT633946 exhibited slightly lower stereochemical reliability, requiring further refinement. GMQE scores ranged from 0.48 to 0.79, with KT250635 achieving a high residue quality score of 0.90. Functional annotation revealed significant homology, with KT250635 sharing 93.1% similarity with Sorghum bicolor and 97.1% with Gossypium raimondii, suggesting broad-spectrum resistance potential. Protein modeling and validation through I-TASSER and QMEAN-Z scores demonstrated structural stability, with KT250635 emerging as the most promising candidate. Phylogenetic analysis clustered KT250635 and KT886994 closely with resistance-related genes across diverse taxa, highlighting evolutionary conservation and functional significance. Additionally, KT633945 and KT885194 exhibited genetic similarity with peach and wild legumes, suggesting potential cross-species resistance traits. Bootstrap analysis with 1000 replicates ensured the robustness of the phylogenetic clustering. These findings provide a strong foundation for breeding CLCuV-resistant cotton varieties and underscore the importance of genetic insights in sustainable crop protection. These results contribute to understanding resistance mechanisms in cotton and may aid in the genetic improvement of susceptible varieties. Future studies should explore the functional role of these genes in resistance pathways and their potential applicability in other crop species to enhance resilience against viral pathogens.

Downloads

Download data is not yet available.

References

Fauquet, C. M., Bisaro, D. M., Briddon, R. W., Brown, J. K., Harrison, B. D., Rybicki, E. P., Stenger, D. C., & Stanley (Study Group Chair), J. (2003). Virology division news : Revision of taxonomic criteria for species demarcation in the family Geminiviridae , and an updated list of begomovirus species. Archives of Virology, 148(2), 405–421. https://doi.org/10.1007/s00705-002-0957-5

Lozano, G., Trenado, H. P., Fiallo-Olivé, E., Chirinos, D., Geraud-Pouey, F., Briddon, R. W., & Navas-Castillo, J. (2016). Characterization of non-coding DNA satellites associated with Sweepoviruses (Genus Begomovirus, Geminiviridae) – Definition of a distinct class of begomovirus-associated satellites. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00162

Smith, A. M. (2018). Host‐pathogen kinetics during influenza infection and coinfection: Insights from predictive modeling. Immunological Reviews, 285(1), 97-112. https://doi.org/10.1111/imr.12692

Sun, K., Fu, K., Hu, T., Shentu, X., & Yu, X. (2023). Leveraging insect viruses and genetic manipulation for sustainable agricultural pest control. Pest Management Science, 80(6), 2515-2527. https://doi.org/10.1002/ps.7878

Whitham, S. A., & Hajimorad, M. R. (2016). Plant genetic resistance to viruses. Current Research Topics in Plant Virology, 87-111. https://doi.org/10.1007/978-3-319-32919-2_4

Biswas, K. K., Tarafdar, A., & Biswas, K. (2012). Viral diseases and its mixed infection in mungbean and urd bean: major biotic constraints in production of food pulses in India. Modern trends in microbial biodiversity of natural ecosystem. biotech books, 301-319.

Gökçe, A. F., Chaudhry, U. K., & Junaid, M. D. (2021). Mapping QTLs for abiotic stress. Developing Climate-Resilient Crops, 175-201. https://doi.org/10.1201/9781003109037-9-9

Yasmin, F. (2023). Investigating the Genetic Basis and Selection of Diverse Plant Specialized Metabolites in Wild Soybean, Glycine soja (Doctoral dissertation, The University of North Carolina at Charlotte).

Notredame, C. (2002). Recent progress in multiple sequence alignment: A survey. Pharmacogenomics, 3(1), 131-144. https://doi.org/10.1517/14622416.3.1.131

Petersen, M., Meusemann, K., Donath, A., Dowling, D., Liu, S., Peters, R. S., Podsiadlowski, L., Vasilikopoulos, A., Zhou, X., Misof, B., & Niehuis, O. (2017). Orthograph: A versatile tool for mapping coding nucleotide sequences to clusters of orthologous genes. BMC Bioinformatics, 18(1). https://doi.org/10.1186/s12859-017-1529-8

Altenhoff, A. M., Glover, N. M., Train, C., Kaleb, K., Warwick Vesztrocy, A., Dylus, D., De Farias, T. M., Zile, K., Stevenson, C., Long, J., Redestig, H., Gonnet, G. H., & Dessimoz, C. (2017). The OMA orthology database in 2018: Retrieving evolutionary relationships among all domains of life through Richer web and programmatic interfaces. Nucleic Acids Research, 46(D1), D477-D485. https://doi.org/10.1093/nar/gkx1019

Hassani-Pak, K., Singh, A., Brandizi, M., Hearnshaw, J., Amberkar, S., Phillips, A. L., Doonan, J. H., & Rawlings, C. (2020). KnetMiner: A comprehensive approach for supporting evidence-based gene discovery and complex trait analysis across species. https://doi.org/10.1101/2020.04.02.017004

Mushtaq, R., Shahzad, K., Mansoor, S., Shah, Z. H., Alsamadany, H., Mujtaba, T., Al-Zahrani, Y., Alzahrani, H. A., Ahmed, Z., & Bashir, A. (2018). Exploration of cotton leaf curl virus (CLCuV) resistance genes and their screening in gossypium arboreum by targeting resistance gene analogues. AoB PLANTS. https://doi.org/10.1093/aobpla/ply067

Sodha, D., Verma, S. K., Chhokar, V., & Paul, D. (2022). Cotton lead curl viral disease in American cotton (G. Hirsutum): genetic basis of resistance and role of genetic engineering tools in combating CLCUD. Scientist, 1(3), 5122-5137.

Sayers, E. W., Barrett, T., Benson, D. A., Bolton, E., Bryant, S. H., Canese, K., Chetvernin, V., Church, D. M., DiCuccio, M., Federhen, S., Feolo, M., Fingerman, I. M., Geer, L. Y., Helmberg, W., Kapustin, Y., Landsman, D., Lipman, D. J., Lu, Z., Madden, T. L., … Ye, J. (2010). Database resources of the national center for biotechnology information. Nucleic Acids Research, 39(Database), D38-D51. https://doi.org/10.1093/nar/gkq1172

Arshad, I., Ahsan, M., Zafar, I., Sajid, M., Sehgal, S. A., Yousaf, W., Noor, A., Rashid, S., Garai, S., Moovendhan, M., & Sharma, R. (2023). Bioinformatics approaches in upgrading microalgal oil for advanced biofuel production through hybrid ORF protein construction. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04766-w

Harrison, N., & Kidner, C. A. (2011). Next–generation sequencing and systematics: What can a billion base pairs of DNA sequence data do for you? TAXON, 60(6), 1552-1566. https://doi.org/10.1002/tax.606002

Altenhoff, A. M., Train, C., Gilbert, K. J., Mediratta, I., Mendes de Farias, T., Moi, D., Nevers, Y., Radoykova, H., Rossier, V., Warwick Vesztrocy, A., Glover, N. M., & Dessimoz, C. (2020). OMA orthology in 2021: Website overhaul, conserved isoforms, ancestral gene order and more. Nucleic Acids Research, 49(D1), D373-D379. https://doi.org/10.1093/nar/gkaa1007

Su, W., Wang, L., Lei, J., Chai, S., Liu, Y., Yang, Y., Yang, X., & Jiao, C. (2017). Genome-wide assessment of population structure and genetic diversity and development of a core germplasm set for sweet potato based on specific length amplified fragment (SLAF) sequencing. PLOS ONE, 12(2), e0172066. https://doi.org/10.1371/journal.pone.0172066

Zafar, I., Tariq Pervez, M., Rather, M. A., Ellahi Babar, M., Ali Raza, M., Iftikhar, R., & Fatima, M. (2020). Genome-wide identification and expression analysis of PPOs and POX gene families in the selected plant species. Biosciences Biotechnology Research Asia, 17(2), 301-318. https://doi.org/10.13005/bbra/2834

Haider, H. I., Zafar, I., Ain, Q. U., Noreen, A., Nazir, A., Javed, R., Sehgal, S. A., Khan, A. A., Rahman, M. M., Rashid, S., Garai, S., & Sharma, R. (2022). Synthesis and characterization of copper oxide nanoparticles: Its influence on corn (Z. mays) and wheat (Triticum aestivum) plants by inoculation of bacillus subtilis. Environmental Science and Pollution Research, 30(13), 37370-37385. https://doi.org/10.1007/s11356-022-24877-7

Ahmad, H. M., Abrar, M., Izhar, O., Zafar, I., Rather, M. A., Alanazi, A. M., Malik, A., Rauf, A., Bhat, M. A., Wani, T. A., & Khan, A. A. (2022). Characterization of fenugreek and its natural compounds targeting AKT-1 protein in cancer: Pharmacophore, virtual screening, and MD simulation techniques. Journal of King Saud University - Science, 34(6), 102186. https://doi.org/10.1016/j.jksus.2022.102186

Ali, S., Noreen, A., Qamar, A., Zafar, I., Ain, Q., Nafidi, H., Bin Jardan, Y. A., Bourhia, M., Rashid, S., & Sharma, R. (2023). Amomum subulatum: A treasure trove of anti-cancer compounds targeting TP53 protein using in vitro and in silico techniques. Frontiers in Chemistry, 11. https://doi.org/10.3389/fchem.2023.1174363

Zafar, I., Anwar, S., Kanwal, F., Yousaf, W., Un Nisa, F., Kausar, T., Ul Ain, Q., Unar, A., Kamal, M. A., Rashid, S., Khan, K. A., & Sharma, R. (2023). Reviewing methods of deep learning for intelligent healthcare systems in genomics and biomedicine. Biomedical Signal Processing and Control, 86, 105263. https://doi.org/10.1016/j.bspc.2023.105263

Ye, Y., & Godzik, A. (2003). Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics, 19(suppl_2), ii246-ii255. https://doi.org/10.1093/bioinformatics/btg1086

Gasteiger, E. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31(13), 3784-3788. https://doi.org/10.1093/nar/gkg563

Zahn-Zabal, M., Dessimoz, C., & Glover, N. M. (2020). Identifying orthologs with OMA: A primer. F1000Research, 9, 27. https://doi.org/10.12688/f1000research.21508.1

Hall, B. G. (2013). Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 30(5), 1229-1235. https://doi.org/10.1093/molbev/mst012

Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2005). The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 22(2), 195-201. https://doi.org/10.1093/bioinformatics/bti770

Margelevičius, M. (2023). GTalign: Spatial index-driven protein structure alignment, superposition, and search. https://doi.org/10.1101/2023.12.18.572167

Ijaz, S., Haq, I. U., Babar, M., & Nasir, B. (2022). Disease resistance genes’ identification, cloning, and characterization in plants. Cereal Diseases: Nanobiotechnological Approaches for Diagnosis and Management, 249-269. https://doi.org/10.1007/978-981-19-3120-8_13

Ali, J., Jan, I., Ullah, H., Fahad, S., Saud, S., Adnan, M., Ali, B., Liu, K., Harrison, M. T., Hassan, S., Kumar, S., Khan, M. A., Kamran, M., Alwahibi, M. S., & S. Elshikh, M. (2023). Biochemical response of okra (Abelmoschus esculentus L.) to selenium (Se) under drought stress. Sustainability, 15(7), 5694. https://doi.org/10.3390/su15075694

Verma, A., Niranjana, M., Jha, S. K., Mallick, N., Agarwal, P., & Vinod. (2020). QTL detection and putative candidate gene prediction for leaf rolling under moisture stress condition in wheat. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-75703-4

Chandramohan, U. M. (2023). Computational biology of antibody epitope, tunnels and pores analysis of protein glutathione S-transferase P, and quantum mechanics. Biochemistry and Biophysics Reports, 36, 101581. https://doi.org/10.1016/j.bbrep.2023.101581

Duplessis, S., Major, I., Martin, F., & Séguin, A. (2009). Poplar and pathogen interactions: Insights frompopulusgenome-wide analyses of resistance and defense gene families and gene expression profiling. Critical Reviews in Plant Sciences, 28(5), 309-334. https://doi.org/10.1080/07352680903241063

Marastoni, L., Sandri, M., Pii, Y., Valentinuzzi, F., Brunetto, G., Cesco, S., & Mimmo, T. (2019). Synergism and antagonisms between nutrients induced by copper toxicity in grapevine rootstocks: Monocropping vs. intercropping. Chemosphere, 214, 563-578. https://doi.org/10.1016/j.chemosphere.2018.09.127

Zambounis, A., Ganopoulos, I., Kalivas, A., Tsaftaris, A., & Madesis, P. (2016). Identification and evidence of positive selection upon resistance gene analogs in cotton (Gossypium hirsutum L.). Physiology and Molecular Biology of Plants, 22(3), 415-421. https://doi.org/10.1007/s12298-016-0362-2

Adams, C. M., Eckenroth, B. E., Putnam, E. E., Doublié, S., & Shen, A. (2013). Structural and functional analysis of the CspB protease required for clostridium spore germination. PLoS Pathogens, 9(2), e1003165. https://doi.org/10.1371/journal.ppat.1003165

Patil, A. M., Pawar, B. D., Wagh, S. G., Markad, N. R., Bhute, N. K., Shinde, H., Shelake, R. M., Červený, J., & Wagh, R. S. (2024). Unravelling abiotic stress physiology in cotton (Gossypium hirsutum L.): Biotechnological interventions in mitigating abiotic stress. https://doi.org/10.20944/preprints202405.0751.v1

Downloads

Published

2025-02-14

How to Cite

Characterization of Potential Virus Resistance Genes in Different Crops Through In-silico Approaches. (2025). Indus Journal of Bioscience Research, 3(2), 129-142. https://doi.org/10.70749/ijbr.v3i2.648