In-Silico Analysis of Genetic Mutations in BRAF and PMS2 for Biomarker Discovery to Transform Colorectal Cancer Research

Authors

  • Nusrat Jahan Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh.
  • Arslan Arshad Department of Microbiology and Molecular Genetics, Bahudin Zakriya University, Multan, Punjab, Pakistan.
  • Samd Ullah School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China.
  • Humera Nazir Department of Microbiology and Molecular Genetics, Bahudin Zakriya University, Multan, Punjab, Pakistan.
  • Iftikhar Ud Din Department of Biochemistry and Biotechnology, The University of Faisalabad (TUF), Faisalabad, Punjab, Pakistan.
  • Muhammad Hammad Zafar Department of Biochemistry and Biotechnology, The University of Faisalabad (TUF), Faisalabad, Punjab, Pakistan.
  • Shaista Shafiq Department of Biochemistry and Biotechnology, The University of Faisalabad (TUF), Faisalabad, Punjab, Pakistan.
  • Faheem Kanwal Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Punjab, Pakistan.
  • Muhammad Azmat Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Punjab, Pakistan.
  • Imran Zafar Department of Biochemistry and Biotechnology, The University of Faisalabad (TUF), Faisalabad, Punjab, Pakistan. https://orcid.org/0000-0002-9246-0850

DOI:

https://doi.org/10.70749/ijbr.v3i2.649

Keywords:

Point mutations, PMS2 gene, BRAF gene, Colorectal cancer, Computational biology

Abstract

Point mutations in the PMS2 and BRAF genes have emerged as critical drivers of colorectal cancer, influencing key cellular processes such as mismatch repair and signal transduction. Understanding the impact of these mutations at the molecular level is essential for advancing cancer diagnostics and therapies. This study leverages advanced bioinformatics tools to systematically identify and evaluate potentially deleterious single nucleotide polymorphisms (SNPs) in the coding regions of PMS2 and BRAF. Using SIFT, PolyPhen-2, and I-Mutant 2.0, we assessed the functional impact of 2412 SNPs in PMS2 and 453 SNPs in BRAF. From these, 32 mutations in PMS2 and one in BRAF were predicted to be highly deleterious, with significant implications for protein stability and function. Specifically, PMS2 mutations such as c.137G>T (p.Ser46Ile) and c.383C>T (p.Ser128Leu) were found to disrupt the protein structure, potentially impairing its role in mismatch repair. The BRAF mutation V600E was identified as highly damaging, consistent with previous studies that associate it with oncogenic activation in several cancers. These results highlight the importance of computational approaches in predicting the pathogenicity of genetic mutations and their potential as therapeutic targets in colorectal cancer. This study establishes a foundation for future experimental and clinical research aimed at evaluating the therapeutic potential of targeting specific SNPs in colorectal cancer. Computational analysis identified 21 deleterious SNPs in PMS2 and one in BRAF, which may disrupt protein function. These findings underscore their potential significance in colorectal cancer progression and targeted therapeutic strategies.

Downloads

Download data is not yet available.

References

Mazhar, T., Haq, I., Ditta, A., Mohsan, S. A., Rehman, F., Zafar, I., Gansau, J. A., & Goh, L. P. (2023). The role of machine learning and deep learning approaches for the detection of skin cancer. Healthcare, 11(3), 415. https://doi.org/10.3390/healthcare11030415

Ali, S., Noreen, A., Qamar, A., Zafar, I., Ain, Q., Nafidi, H., Bin Jardan, Y. A., Bourhia, M., Rashid, S., & Sharma, R. (2023). Amomum subulatum: A treasure trove of anti-cancer compounds targeting TP53 protein using in vitro and in silico techniques. Frontiers in Chemistry, 11. https://doi.org/10.3389/fchem.2023.1174363

Ahmad, H. M., Abrar, M., Izhar, O., Zafar, I., Rather, M. A., Alanazi, A. M., Malik, A., Rauf, A., Bhat, M. A., Wani, T. A., & Khan, A. A. (2022). Characterization of fenugreek and its natural compounds targeting AKT-1 protein in cancer: Pharmacophore, virtual screening, and MD simulation techniques. Journal of King Saud University - Science, 34(6), 102186. https://doi.org/10.1016/j.jksus.2022.102186

Luo, C., Cen, S., Ding, G., & Wu, W. (2019). Mucinous colorectal adenocarcinoma: Clinical pathology and treatment options. Cancer Communications, 39(1), 1-13. https://doi.org/10.1186/s40880-019-0361-0

Verhulst, J., Ferdinande, L., Demetter, P., & Ceelen, W. (2012). Mucinous subtype as prognostic factor in colorectal cancer: A systematic review and meta-analysis. Journal of Clinical Pathology, 65(5), 381-388. https://doi.org/10.1136/jclinpath-2011-200340

Zou, H., Liu, C., Ruan, Y., Fang, L., Wu, T., Han, S., Dang, T., Meng, H., & Zhang, Y. (2024). Colorectal medullary carcinoma: A pathological subtype with intense immune response and potential to benefit from immune checkpoint inhibitors. Expert Review of Clinical Immunology, 20(8), 997-1008. https://doi.org/10.1080/1744666x.2024.2328746

Kim, J. H. (2014). Molecular and prognostic heterogeneity of microsatellite-unstable colorectal cancer. World Journal of Gastroenterology, 20(15), 4230. https://doi.org/10.3748/wjg.v20.i15.4230

Karstensen, J. G., Bülow, S., Højen, H., Jelsig, A. M., Jespersen, N., Andersen, K. K., Wewer, M. D., Burisch, J., & Pommergaard, H. C. (2023). Cancer in patients with familial adenomatous polyposis: A nationwide Danish cohort study with matched controls. Gastroenterology, 165(3), 573-581.e3. https://doi.org/10.1053/j.gastro.2023.05.010

Spaander, M. C., Zauber, A. G., Syngal, S., Blaser, M. J., Sung, J. J., You, Y. N., & Kuipers, E. J. (2023). Young-onset colorectal cancer. Nature Reviews Disease Primers, 9(1). https://doi.org/10.1038/s41572-023-00432-7

Zhou, E., & Rifkin, S. (2021). Colorectal cancer and diet. Gastroenterology Clinics of North America, 50(1), 101-111. https://doi.org/10.1016/j.gtc.2020.10.012

Veettil, S. K., Wong, T. Y., Loo, Y. S., Playdon, M. C., Lai, N. M., Giovannucci, E. L., & Chaiyakunapruk, N. (2021). Role of diet in colorectal cancer incidence. JAMA Network Open, 4(2), e2037341. https://doi.org/10.1001/jamanetworkopen.2020.37341

Lanjewar, M. G., Panchbhai, K. G., & Charanarur, P. (2023). Lung cancer detection from CT scans using modified DenseNet with feature selection methods and ML classifiers. Expert Systems with Applications, 224, 119961. https://doi.org/10.1016/j.eswa.2023.119961

Anari, S., Tataei Sarshar, N., Mahjoori, N., Dorosti, S., & Rezaie, A. (2022). Review of deep learning approaches for thyroid cancer diagnosis. Mathematical Problems in Engineering, 2022, 1-8. https://doi.org/10.1155/2022/5052435

Azooz, E. A., Abduladheem, N. A., & El Abbadi, N. K. (2024). An overview of the green synthesis of coinage metallic nanoparticles: Protocols, challenges, and cancer treatments. Nano LIFE, 15(05). https://doi.org/10.1142/s1793984424300115

Liu, Y., & Yu, T. (2023). Clinicopathological characteristics and prognosis of triple-negative breast cancer invasive ductal carcinoma with ductal carcinoma in situ. Journal of Cancer Research and Clinical Oncology, 149(13), 11181-11191. https://doi.org/10.1007/s00432-023-04895-9

Zafar, I., Saba, M., Raza, M. A., Rather, M. A., Rayan, R. A., Fatima, M., Ain, Q. U., & Ishneiwra, R. M. (2021). Roles of bioinformatics in reproductive science. Recent updates in molecular Endocrinology and Reproductive Physiology of Fish, 203-228. https://doi.org/10.1007/978-981-15-8369-8_15

Zafar, I., Anwar, S., Kanwal, F., Yousaf, W., Un Nisa, F., Kausar, T., Ul Ain, Q., Unar, A., Kamal, M. A., Rashid, S., Khan, K. A., & Sharma, R. (2023). Reviewing methods of deep learning for intelligent healthcare systems in genomics and biomedicine. Biomedical Signal Processing and Control, 86, 105263. https://doi.org/10.1016/j.bspc.2023.105263

Bibi, R., Nazir, S., Shafiq, S., Zafar, I., Mohany, M., Al-Rejaie, S. S., Ul Ain, Q., bano, N., Rani, S., Shafiq, M., & Mouada, H. (2025). A novel supramolecular Co-EDTA and Ni-Anderson polyoxometalate hybrid as a high-performance electrocatalyst for alkaline water splitting. Materials Research Bulletin, 186, 113329. https://doi.org/10.1016/j.materresbull.2025.113329

Lee, N., Bae, B., Han, W., Bae, I., Shin, J., Wang, K., Oh, J., & Park, J. K. (2024). Immobilization of erythrosine dye in polysiloxane to fabricate a cost-effective renewable antibiotic film through visible light-induced singlet oxygen generation. Journal of Cleaner Production, 483, 144291. https://doi.org/10.1016/j.jclepro.2024.144291

Zaid A. Hussein, & Abdulkareem A. Al-Kazaz. (2023). Bioinformatics evaluation of CRISP2 gene SNPs and their impacts on protein. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 54(2), 369-377. https://doi.org/10.36103/ijas.v54i2.1711

Thomas, P. D., Ebert, D., Muruganujan, A., Mushayahama, T., Albou, L., & Mi, H. (2021). PANTHER: Making genome‐scale phylogenetics accessible to all. Protein Science, 31(1), 8-22. https://doi.org/10.1002/pro.4218

Kamal, E., Kaddam, L. A., Ahmed, M., & Alabdulkarim, A. (2024). Integrating artificial intelligence and bioinformatics methods to identify disruptive STAT1 variants impacting protein stability and function. https://doi.org/10.1101/2024.10.04.616446

Rafaee, A., Kashani-Amin, E., Meybodi, A. M., Ebrahim-Habibi, A., & Sabbaghian, M. (2022). Structural modeling of human AKAP3 protein and in silico analysis of single nucleotide polymorphisms associated with sperm motility. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-07513-9

Arshad, I., Ahsan, M., Zafar, I., Sajid, M., Sehgal, S. A., Yousaf, W., Noor, A., Rashid, S., Garai, S., Moovendhan, M., & Sharma, R. (2023). Bioinformatics approaches in upgrading microalgal oil for advanced biofuel production through hybrid ORF protein construction. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04766-w

Mouada, H., Lanez, T., & Zafar, I. (2024). ROS scavenging, DNA binding and NADPH oxidase inhibition potential of n’-ferrocenylmethyl-n’- phenylpropionohydrazide using cyclic voltammetry and molecular docking. Journal of Organometallic Chemistry, 1007, 123026. https://doi.org/10.1016/j.jorganchem.2024.123026

Hamed, S. H., Azooz, E. A., & Al-Mulla, E. A. (2023). Nanoparticles-assisted wound healing: A review. Nano Biomedicine and Engineering, 15(4), 425-435. https://doi.org/10.26599/nbe.2023.9290039

Selvaraj, C., Chandra, I., & Singh, S. K. (2021). Artificial intelligence and machine learning approaches for drug design: Challenges and opportunities for the pharmaceutical industries. Molecular Diversity, 26(3), 1893-1913. https://doi.org/10.1007/s11030-021-10326-z

Nolano, A., Medugno, A., Trombetti, S., Liccardo, R., De Rosa, M., Izzo, P., & Duraturo, F. (2022). Hereditary colorectal cancer: State of the art in lynch syndrome. Cancers, 15(1), 75. https://doi.org/10.3390/cancers15010075

Paixão, D., Lima, T. H., De Souza, R. R., Carnavalli, J. E., Picanço-Albuquerque, C. G., Silva-Fernandes, I. J., De Barros Silva, P. G., Mitne-Neto, M., Moreira, C. M., & Baratela, W. A. (2024). Evaluation of pathogenic variants detected in high homology regions of the PMS2 gene. How effective is long-range PCR? Frontiers in Oncology, 14. https://doi.org/10.3389/fonc.2024.1390221

Bryant, P., Walton Bernstedt, S., Thutkawkorapin, J., Backman, A., Lindblom, A., & Lagerstedt-Robinson, K. (2022). Exome sequencing in a Swedish family with PMS2 mutation with varying penetrance of colorectal cancer: Investigating the presence of genetic risk modifiers in colorectal cancer risk. European Journal of Cancer Prevention, 32(2), 113-118. https://doi.org/10.1097/cej.0000000000000769

DeWitt, J. T., Raghunathan, M., & Haricharan, S. (2025). Nonrepair functions of DNA mismatch repair proteins: New avenues for precision oncology. Trends in Cancer, 11(1), 49-61. https://doi.org/10.1016/j.trecan.2024.10.001

Schamschula, E., Kinzel, M., Wernstedt, A., Oberhuber, K., Gottschling, H., Schnaiter, S., Friedrichs, N., Merkelbach-Bruse, S., Zschocke, J., Gallon, R., & Wimmer, K. (2022). Teenage-onset colorectal cancers in a Digenic cancer predisposition syndrome provide clues for the interaction between mismatch repair and polymerase δ proofreading deficiency in Tumorigenesis. Biomolecules, 12(10), 1350. https://doi.org/10.3390/biom12101350

Mahdouani, M., Ben Ahmed, S., Hmila, F., Rais, H., Ben Sghaier, R., Saad, H., Ben Said, M., Masmoudi, S., Hmida, D., Brieger, A., Zeuzem, S., Saad, A., Gribaa, M., & Plotz, G. (2022). Functional characterization of MLH1 missense variants unveils mechanisms of pathogenicity and clarifies role in cancer. PLOS ONE, 17(12), e0278283. https://doi.org/10.1371/journal.pone.0278283

Xing, H., Song, Y., Zhang, Z., & Koch, P. D. (2021). Clinical characteristics of BRAF V600E gene mutation in patients of epilepsy-associated brain tumor: A meta-analysis. Journal of Molecular Neuroscience, 71(9), 1815-1824. https://doi.org/10.1007/s12031-021-01837-3

Andrews, L. J., Thornton, Z. A., Saincher, S. S., Yao, I. Y., Dawson, S., McGuinness, L. A., ... & Kurian, K. M. (2022). Prevalence of BRAF V600 in glioma and use of BRAF Inhibitors in patients with BRAF V600 mutation-positive glioma: systematic review. Neuro-oncology, 24(4), 528-540. https://doi.org/10.1093/neuonc/noab247

Owsley, J., Stein, M. K., Porter, J., In, G. K., Salem, M., O’Day, S., Elliott, A., Poorman, K., Gibney, G., & VanderWalde, A. (2020). Prevalence of class I–III BRAF mutations among 114,662 cancer patients in a large genomic database. Experimental Biology and Medicine, 246(1), 31-39. https://doi.org/10.1177/1535370220959657

Garutti, M., Bergnach, M., Polesel, J., Palmero, L., Pizzichetta, M. A., & Puglisi, F. (2022). BRAF and MEK inhibitors and their Toxicities: A meta-analysis. Cancers, 15(1), 141. https://doi.org/10.3390/cancers15010141

Fasano, C., Lepore Signorile, M., De Marco, K., Forte, G., Disciglio, V., Sanese, P., Grossi, V., & Simone, C. (2024). In Silico deciphering of the potential impact of variants of uncertain significance in hereditary colorectal cancer syndromes. Cells, 13(16), 1314. https://doi.org/10.3390/cells13161314

Chung, C. (2021). Predictive and prognostic biomarkers with therapeutic targets in colorectal cancer: A 2021 update on current development, evidence, and recommendation. Journal of Oncology Pharmacy Practice, 28(4), 850-869. https://doi.org/10.1177/10781552211005525

Downloads

Published

2025-02-14

How to Cite

In-Silico Analysis of Genetic Mutations in BRAF and PMS2 for Biomarker Discovery to Transform Colorectal Cancer Research. (2025). Indus Journal of Bioscience Research, 3(2), 143-156. https://doi.org/10.70749/ijbr.v3i2.649