Harnessing Artificial Intelligence in Early Detection and Diagnosis of Alzheimer's Disease: Current and Future Applications
DOI:
https://doi.org/10.70749/ijbr.v3i2.665Keywords:
Alzheimer’s Disease, Artificial Intelligence, Early Detection, Convolutional Neural Networks, Neuroimaging, Multi-modal Data, Machine Learning, Diagnostic AccuracyAbstract
Alzheimer's Disease (AD) is a neurodegenerative disorder requiring early detection. This study compares AI models—Convolutional Neural Networks (CNN), Support Vector Machines (SVM), and Random Forest (RF)—in analyzing neuroimaging data (MRI, PET) to enhance AD prediction and improve early diagnosis using machine learning techniques. Through the application of multi-modal data in the form of genetic, clinical, and neuroimaging data, the study also investigates the effectiveness of combining different data types to enhance the predictability of AI models for AD diagnosis. Feature importance analysis was also performed using methods like SHAP (SHAP (Shapley Additive Explanations) values to determine the most important variables in the model predictions, e.g., certain brain regions or genetic components. The study also investigates the generalizability and real-world applicability of the AI models by training the models on an independent dataset representing diverse clinical settings. The performance of each model was assessed using a variety of statistical measures like accuracy, precision, recall, F1-score, and Area Under the Curve (AUC). The findings showed that CNN performed better compared to that of SVM and RF models in all the performance metrics with the highest accuracy (92%), precision (93%), recall (91%), and AUC (0.95). The findings suggest that CNN effectively detects subtle neuroimaging patterns, making it a strong tool for early Alzheimer's diagnosis. While SVM and RF performed well, CNN showed superior accuracy. Cross-validation confirmed its generalizability, crucial for clinical use. Implementing AI models, especially CNN, may enable earlier detection, timely interventions, and improved patient outcomes in Alzheimer’s care.
Downloads
References
AbuAlrob, M. A., & Mesraoua, B. (2024). Harnessing artificial intelligence for the diagnosis and treatment of neurological emergencies: A comprehensive review of recent advances and future directions. Frontiers in Neurology, 15. https://doi.org/10.3389/fneur.2024.1485799
Sriman, B., Vigneshkumar, M., Dhinesh Kumar, K. S., Praveenkumar, J., & Suganya, K. (2024). Predictive precision harnessing AI for early Alzheimer's detection. Advances in Bioinformatics and Biomedical Engineering, 215-240. https://doi.org/10.4018/979-8-3693-6442-0.ch009
Kale, M., Wankhede, N., Pawar, R., Ballal, S., Kumawat, R., Goswami, M., Khalid, M., Taksande, B., Upaganlawar, A., Umekar, M., Kopalli, S. R., & Koppula, S. (2024). AI-driven innovations in Alzheimer's disease: Integrating early diagnosis, personalized treatment, and prognostic modelling. Ageing Research Reviews, 101, 102497. https://doi.org/10.1016/j.arr.2024.102497
Patwekar, M., Patwekar, F., Sanaullah, S., Shaikh, D., Almas, U., & Sharma, R. (2023). Harnessing artificial intelligence for enhanced Parkinson’s disease management: Pathways, treatment, and prospects. Trends in Immunotherapy, 7(2), 2395. https://doi.org/10.24294/ti.v7.i2.2395
Priya, B., Gupta, P., & Singh, S. (2025). Harnessing the potentials of machine learning models in Alzheimer's disease prediction and detection. Advances in Computational Methods and Modeling for Science and Engineering, 259-267. https://doi.org/10.1016/b978-0-44-330012-7.00027-8
Aditya Shastry, K., & Sanjay, H. A. (2023). Artificial intelligence techniques for the effective diagnosis of Alzheimer’s disease: A review. Multimedia Tools and Applications, 83(13), 40057-40092. https://doi.org/10.1007/s11042-023-16928-z
Harshini, V. & Sweatha, S. (2024). Alzheimer's diagnosis. Advances in Medical Technologies and Clinical Practice, 54-100. https://doi.org/10.4018/979-8-3693-7462-7.ch004
Ranson, J. M., Bucholc, M., Lyall, D., Newby, D., Winchester, L., Oxtoby, N. P., Veldsman, M., Rittman, T., Marzi, S., Skene, N., Al Khleifat, A., Foote, I. F., Orgeta, V., Kormilitzin, A., Lourida, I., & Llewellyn, D. J. (2023). Harnessing the potential of machine learning and artificial intelligence for dementia research. Brain Informatics, 10(1). https://doi.org/10.1186/s40708-022-00183-3
Deena, G., et al., (2024). Cognitive assessment and early detection of Alzheimer's disease. Advances in Medical Technologies and Clinical Practice, 389-402. https://doi.org/10.4018/979-8-3693-3605-2.ch025
KS, A. K., Gireesh, H. R., & Shashidhar, V. (2024). Revolutionizing Alzheimer's Diagnosis: Navigating the Challenges and Embracing Opportunities in the Clinical Integration of AI-Powered Tools. In AI-Driven Alzheimer's Disease Detection and Prediction (pp. 160-174). IGI Global. https://doi.org/10.4018/979-8-3693-3605-2.ch011
Subramanian, K., Hajamohideen, F., Vimbi Viswan, Shaffi, N., & Mahmud, M. (2024). Exploring intervention techniques for Alzheimer’s disease: Conventional methods and the role of AI in advancing care. Artificial Intelligence and Applications, 2(2), 59-77. https://doi.org/10.47852/bonviewaia42022497
Sharma, D., & Kaushik, P. (2025). Applications of AI in neurological disease detection — A review of specific ways in which AI is being used to detect and diagnose neurological disorders, such as Alzheimer's and Parkinson's. AI in Disease Detection, 167-189. https://doi.org/10.1002/9781394278695.ch8
Nazir, A., Assad, A., Hussain, A., & Singh, M. (2024). Alzheimer’s disease diagnosis using deep learning techniques: Datasets, challenges, research gaps and future directions. International Journal of System Assurance Engineering and Management. https://doi.org/10.1007/s13198-024-02441-5
Kalani, M., & Anjankar, A. (2024). Revolutionizing neurology: The role of artificial intelligence in advancing diagnosis and treatment. Cureus. https://doi.org/10.7759/cureus.61706
Sultana, A., Rafi, A. H., Chowdhury, A. A. A., & Tariq, M. (2023). Leveraging artificial intelligence in neuroimaging for enhanced brain health diagnosis. Revista de Inteligencia Artificial en Medicina, 14(1), 1217-1235.
Rasool, S., Husnain, A., Saeed, A., Gill, A. Y., & Hussain, H. K. (2023). Harnessing predictive power: exploring the crucial role of machine learning in early disease detection. JURIHUM: Jurnal Inovasi dan Humaniora, 1(2), 302-315. http://jurnalmahasiswa.com/index.php/Jurihum/article/view/408
Etekochay, M. O., Amaravadhi, A. R., González, G. V., Atanasov, A. G., Matin, M., Mofatteh, M., Steinbusch, H. W., Tesfaye, T., & Praticò, D. (2024). Unveiling new strategies facilitating the implementation of artificial intelligence in neuroimaging for the early detection of Alzheimer’s disease. Journal of Alzheimer's Disease, 99(1), 1-20. https://doi.org/10.3233/jad-231135
Kumar, R., & Prtimres, R. (2024). Advancements in Neuroimaging Techniques for Early Diagnosis of Alzheimer's disease. Journal Environmental Sciences And Technology, 3(1), 735-752.
Suganyadevi, S., Pershiya, A. S., Balasamy, K., Seethalakshmi, V., Bala, S., & Arora, K. (2024). Deep learning based Alzheimer disease diagnosis: A comprehensive review. SN Computer Science, 5(4). https://doi.org/10.1007/s42979-024-02743-2
Khushi Jha, & Awadhesh Kumar. (2024). Role of artificial intelligence in detecting neurological disorders. International Research Journal on Advanced Engineering Hub (IRJAEH), 2(02), 73-79. https://doi.org/10.47392/irjaeh.2024.0015
Bazarbekov, I., Razaque, A., Ipalakova, M., Yoo, J., Assipova, Z., & Almisreb, A. (2024). A review of artificial intelligence methods for Alzheimer's disease diagnosis: Insights from neuroimaging to sensor data analysis. Biomedical Signal Processing and Control, 92, 106023. https://doi.org/10.1016/j.bspc.2024.106023
Ganesh, S., Chithambaram, T., Krishnan, N. R., Vincent, D. R., Kaliappan, J., & Srinivasan, K. (2023). Exploring Huntington’s disease diagnosis via artificial intelligence models: A comprehensive review. Diagnostics, 13(23), 3592. https://doi.org/10.3390/diagnostics13233592
Saravanan, V., Kalangi, R. R., & Thangavel, S. (2024). Unravelling AI and Machine Learning Essentials in Alzheimer's Research. In AI-Driven Alzheimer's Disease Detection and Prediction (pp. 147-159). IGI Global. https://doi.org/10.4018/979-8-3693-3605-2.ch010
Winchester, L. M., Harshfield, E. L., Shi, L., Badhwar, A., Khleifat, A. A., Clarke, N., Dehsarvi, A., Lengyel, I., Lourida, I., Madan, C. R., Marzi, S. J., Proitsi, P., Rajkumar, A. P., Rittman, T., Silajdžić, E., Tamburin, S., Ranson, J. M., & Llewellyn, D. J. (2023). Artificial intelligence for biomarker discovery in Alzheimer's disease and dementia. Alzheimer's & Dementia, 19(12), 5860-5871. https://doi.org/10.1002/alz.13390
Chandrashekhar, A., Parveen, N., A., M., & D., M. (2024). Global initiatives and collaborations in AI for Alzheimer's disease. Advances in Medical Technologies and Clinical Practice, 342-355. https://doi.org/10.4018/979-8-3693-3605-2.ch022
Zaman, Q. (2024). The role of artificial intelligence in early disease detection: transforming diagnostics and treatment. Multidisciplinary Journal of Healthcare (MJH), 1(2), 43-54. https://www.researchcorridor.org/index.php/mjh/article/view/52
Tsang, G., Xie, X., & Zhou, S. (2020). Harnessing the power of machine learning in dementia informatics research: Issues, opportunities, and challenges. IEEE Reviews in Biomedical Engineering, 13, 113-129. https://doi.org/10.1109/rbme.2019.2904488
Gupta, R., Kumari, S., Senapati, A., Ambasta, R. K., & Kumar, P. (2023). New era of artificial intelligence and machine learning-based detection, diagnosis, and therapeutics in Parkinson’s disease. Ageing Research Reviews, 90, 102013. https://doi.org/10.1016/j.arr.2023.102013
Kasula, B. Y. (2023). A machine learning approach for differential diagnosis and prognostic prediction in Alzheimer's disease. International Journal of Sustainable Development in Computing Science, 5(4), 1-8. https://www.ijsdcs.com/index.php/ijsdcs/article/view/397
Ravi, R., Sridevi, T. P., Nirmala Devi, N., & Mandadi, S. (2024). Bridging the gap. Advances in Bioinformatics and Biomedical Engineering, 1-26. https://doi.org/10.4018/979-8-3693-6442-0.ch001
farooq Mohi-U-din, S., Tariq, M., & Tariq, A. (2024). Deep Dive into Health: Harnessing AI and Deep Learning for Brain and Heart Care. International Journal of Advanced Engineering Technologies and Innovations, 1(4), 248-267. https://ijaeti.com/index.php/Journal/article/view/272
Jayachandran, R., Dantapur, B., Antony, A. S., & Nagapadma, R. (2024). Transforming healthcare through smart health systems: Harnessing technology for enhanced patient care. Approaches to Global Sustainability, Markets, and Governance, 107-127. https://doi.org/10.1007/978-981-97-9555-0_6
Nutulapati, N. P., Karunakaran, N. B., Banupriya, V., Sivasundaram, M., & Kaveripakam, V. R. (2024). AI in Neurodegeneration prediction. Advances in Medical Technologies and Clinical Practice, 114-130. https://doi.org/10.4018/979-8-3693-3605-2.ch008
Ishaaq, N., Nafis, M. T., & Reyaz, A. (2024). Leveraging deep learning for early diagnosis of Alzheimer's using comparative analysis of Convolutional neural network techniques. Advances in Medical Diagnosis, Treatment, and Care, 142-155. https://doi.org/10.4018/979-8-3693-3679-3.ch009
Frey, A., Karran, M., Jimenez, R. C., Baxter, J., Adeogun, M., Bose, N., Chan, D., Crawford, J., Dagum, P., Everson, R., Hinds, C., Holmes, C., Kourtzi, Z., Llewellyn, D. J., Mallon, A., Malzbender, K., Milne, R., Mummery, C., Oldham, M., … Routledge, C. (2019). Harnessing the potential of digital technologies for the early detection of neurodegenerative diseases (EDoN). https://doi.org/10.31219/osf.io/u49z5
Lyall, D. M., Kormilitzin, A., Lancaster, C., Sousa, J., Petermann‐Rocha, F., Buckley, C., Harshfield, E. L., Iveson, M. H., Madan, C. R., McArdle, R., Newby, D., Orgeta, V., Tang, E., Tamburin, S., Thakur, L. S., Lourida, I., Llewellyn, D. J., & Ranson, J. M. (2023). Artificial intelligence for dementia—Applied models and digital health. Alzheimer's & Dementia, 19(12), 5872-5884. https://doi.org/10.1002/alz.13391
Rajaraman, S. (2024). Artificial intelligence in Neuro degenerative diseases: Opportunities and challenges. Studies in Computational Intelligence, 133-153. https://doi.org/10.1007/978-3-031-53148-4_8
Mathur, S. and A. Jaiswal, Demystifying the Role of Artificial Intelligence in Neurodegenerative Diseases, in AI and Neuro-Degenerative Diseases: Insights and Solutions. 2024, Springer. p. 1-33.
Mahesh, S., & Ram Mohan, R. K. (2024). Advancing Alzheimer's disease detection with big data and machine learning. Advances in Bioinformatics and Biomedical Engineering, 241-264. https://doi.org/10.4018/979-8-3693-6442-0.ch010
Wankhede, N., Kale, M., Shukla, M., Nathiya, D., R., R., Kaur, P., Goyanka, B., Rahangdale, S., Taksande, B., Upaganlawar, A., Khalid, M., Chigurupati, S., Umekar, M., Kopalli, S. R., & Koppula, S. (2024). Leveraging AI for the diagnosis and treatment of autism spectrum disorder: Current trends and future prospects. Asian Journal of Psychiatry, 101, 104241. https://doi.org/10.1016/j.ajp.2024.104241
Stroud, C., Onnela, J., & Manji, H. (2019). Harnessing digital technology to predict, diagnose, monitor, and develop treatments for brain disorders. npj Digital Medicine, 2(1). https://doi.org/10.1038/s41746-019-0123-z
Aljuhani, M., Ashraf, A., & Edison, P. (2024). Use of artificial intelligence in imaging dementia. Cells, 13(23), 1965. https://doi.org/10.3390/cells13231965
Afreen, Z., Vadlamudi, S., Chandu, U. M., Pasupuleti, L. B., P. V. V. S., S., & V. V. S., S. (2024). Advancing Alzheimer's disease diagnosis leveraging quantum networking with AI and ML-driven CNN models. Advances in Computational Intelligence and Robotics, 203-218. https://doi.org/10.4018/979-8-3693-8135-9.ch012
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.