Harnessing Artificial Intelligence in Early Detection and Diagnosis of Alzheimer's Disease: Current and Future Applications

Authors

  • Alaa Abdelfattah Dubai Medical College, Dubai.
  • Waseem Sajjad King Edward Medical University, Lahore/ Saleem Memorial Hospital, Lahore, Punjab, Pakistan.
  • Imtiaz Ali Soomro Department of Surgery, Peoples University of Medical and Health Sciences, Nawabshah, Sindh, Pakistan.
  • Muhammad Tariq Royal Surrey County Hospital NHS Trust, Guildford, United Kingdom.
  • Lailma Maqbool Northwest Institute of Health Sciences, Peshawar, KP, Pakistan.
  • Adnan Ahmed Rafique Department of CS and IT, University of Poonch, Rawalakot, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i2.665

Keywords:

Alzheimer’s Disease, Artificial Intelligence, Early Detection, Convolutional Neural Networks, Neuroimaging, Multi-modal Data, Machine Learning, Diagnostic Accuracy

Abstract

Alzheimer's Disease (AD) is a neurodegenerative disorder requiring early detection. This study compares AI models—Convolutional Neural Networks (CNN), Support Vector Machines (SVM), and Random Forest (RF)—in analyzing neuroimaging data (MRI, PET) to enhance AD prediction and improve early diagnosis using machine learning techniques. Through the application of multi-modal data in the form of genetic, clinical, and neuroimaging data, the study also investigates the effectiveness of combining different data types to enhance the predictability of AI models for AD diagnosis. Feature importance analysis was also performed using methods like SHAP (SHAP (Shapley Additive Explanations) values to determine the most important variables in the model predictions, e.g., certain brain regions or genetic components. The study also investigates the generalizability and real-world applicability of the AI models by training the models on an independent dataset representing diverse clinical settings. The performance of each model was assessed using a variety of statistical measures like accuracy, precision, recall, F1-score, and Area Under the Curve (AUC). The findings showed that CNN performed better compared to that of SVM and RF models in all the performance metrics with the highest accuracy (92%), precision (93%), recall (91%), and AUC (0.95). The findings suggest that CNN effectively detects subtle neuroimaging patterns, making it a strong tool for early Alzheimer's diagnosis. While SVM and RF performed well, CNN showed superior accuracy. Cross-validation confirmed its generalizability, crucial for clinical use. Implementing AI models, especially CNN, may enable earlier detection, timely interventions, and improved patient outcomes in Alzheimer’s care.

Downloads

Download data is not yet available.

References

AbuAlrob, M. A., & Mesraoua, B. (2024). Harnessing artificial intelligence for the diagnosis and treatment of neurological emergencies: A comprehensive review of recent advances and future directions. Frontiers in Neurology, 15. https://doi.org/10.3389/fneur.2024.1485799

Sriman, B., Vigneshkumar, M., Dhinesh Kumar, K. S., Praveenkumar, J., & Suganya, K. (2024). Predictive precision harnessing AI for early Alzheimer's detection. Advances in Bioinformatics and Biomedical Engineering, 215-240. https://doi.org/10.4018/979-8-3693-6442-0.ch009

Kale, M., Wankhede, N., Pawar, R., Ballal, S., Kumawat, R., Goswami, M., Khalid, M., Taksande, B., Upaganlawar, A., Umekar, M., Kopalli, S. R., & Koppula, S. (2024). AI-driven innovations in Alzheimer's disease: Integrating early diagnosis, personalized treatment, and prognostic modelling. Ageing Research Reviews, 101, 102497. https://doi.org/10.1016/j.arr.2024.102497

Patwekar, M., Patwekar, F., Sanaullah, S., Shaikh, D., Almas, U., & Sharma, R. (2023). Harnessing artificial intelligence for enhanced Parkinson’s disease management: Pathways, treatment, and prospects. Trends in Immunotherapy, 7(2), 2395. https://doi.org/10.24294/ti.v7.i2.2395

Priya, B., Gupta, P., & Singh, S. (2025). Harnessing the potentials of machine learning models in Alzheimer's disease prediction and detection. Advances in Computational Methods and Modeling for Science and Engineering, 259-267. https://doi.org/10.1016/b978-0-44-330012-7.00027-8

Aditya Shastry, K., & Sanjay, H. A. (2023). Artificial intelligence techniques for the effective diagnosis of Alzheimer’s disease: A review. Multimedia Tools and Applications, 83(13), 40057-40092. https://doi.org/10.1007/s11042-023-16928-z

Harshini, V. & Sweatha, S. (2024). Alzheimer's diagnosis. Advances in Medical Technologies and Clinical Practice, 54-100. https://doi.org/10.4018/979-8-3693-7462-7.ch004

Ranson, J. M., Bucholc, M., Lyall, D., Newby, D., Winchester, L., Oxtoby, N. P., Veldsman, M., Rittman, T., Marzi, S., Skene, N., Al Khleifat, A., Foote, I. F., Orgeta, V., Kormilitzin, A., Lourida, I., & Llewellyn, D. J. (2023). Harnessing the potential of machine learning and artificial intelligence for dementia research. Brain Informatics, 10(1). https://doi.org/10.1186/s40708-022-00183-3

Deena, G., et al., (2024). Cognitive assessment and early detection of Alzheimer's disease. Advances in Medical Technologies and Clinical Practice, 389-402. https://doi.org/10.4018/979-8-3693-3605-2.ch025

KS, A. K., Gireesh, H. R., & Shashidhar, V. (2024). Revolutionizing Alzheimer's Diagnosis: Navigating the Challenges and Embracing Opportunities in the Clinical Integration of AI-Powered Tools. In AI-Driven Alzheimer's Disease Detection and Prediction (pp. 160-174). IGI Global. https://doi.org/10.4018/979-8-3693-3605-2.ch011

Subramanian, K., Hajamohideen, F., Vimbi Viswan, Shaffi, N., & Mahmud, M. (2024). Exploring intervention techniques for Alzheimer’s disease: Conventional methods and the role of AI in advancing care. Artificial Intelligence and Applications, 2(2), 59-77. https://doi.org/10.47852/bonviewaia42022497

Sharma, D., & Kaushik, P. (2025). Applications of AI in neurological disease detection — A review of specific ways in which AI is being used to detect and diagnose neurological disorders, such as Alzheimer's and Parkinson's. AI in Disease Detection, 167-189. https://doi.org/10.1002/9781394278695.ch8

Nazir, A., Assad, A., Hussain, A., & Singh, M. (2024). Alzheimer’s disease diagnosis using deep learning techniques: Datasets, challenges, research gaps and future directions. International Journal of System Assurance Engineering and Management. https://doi.org/10.1007/s13198-024-02441-5

Kalani, M., & Anjankar, A. (2024). Revolutionizing neurology: The role of artificial intelligence in advancing diagnosis and treatment. Cureus. https://doi.org/10.7759/cureus.61706

Sultana, A., Rafi, A. H., Chowdhury, A. A. A., & Tariq, M. (2023). Leveraging artificial intelligence in neuroimaging for enhanced brain health diagnosis. Revista de Inteligencia Artificial en Medicina, 14(1), 1217-1235.

Rasool, S., Husnain, A., Saeed, A., Gill, A. Y., & Hussain, H. K. (2023). Harnessing predictive power: exploring the crucial role of machine learning in early disease detection. JURIHUM: Jurnal Inovasi dan Humaniora, 1(2), 302-315. http://jurnalmahasiswa.com/index.php/Jurihum/article/view/408

Etekochay, M. O., Amaravadhi, A. R., González, G. V., Atanasov, A. G., Matin, M., Mofatteh, M., Steinbusch, H. W., Tesfaye, T., & Praticò, D. (2024). Unveiling new strategies facilitating the implementation of artificial intelligence in neuroimaging for the early detection of Alzheimer’s disease. Journal of Alzheimer's Disease, 99(1), 1-20. https://doi.org/10.3233/jad-231135

Kumar, R., & Prtimres, R. (2024). Advancements in Neuroimaging Techniques for Early Diagnosis of Alzheimer's disease. Journal Environmental Sciences And Technology, 3(1), 735-752.

Suganyadevi, S., Pershiya, A. S., Balasamy, K., Seethalakshmi, V., Bala, S., & Arora, K. (2024). Deep learning based Alzheimer disease diagnosis: A comprehensive review. SN Computer Science, 5(4). https://doi.org/10.1007/s42979-024-02743-2

Khushi Jha, & Awadhesh Kumar. (2024). Role of artificial intelligence in detecting neurological disorders. International Research Journal on Advanced Engineering Hub (IRJAEH), 2(02), 73-79. https://doi.org/10.47392/irjaeh.2024.0015

Bazarbekov, I., Razaque, A., Ipalakova, M., Yoo, J., Assipova, Z., & Almisreb, A. (2024). A review of artificial intelligence methods for Alzheimer's disease diagnosis: Insights from neuroimaging to sensor data analysis. Biomedical Signal Processing and Control, 92, 106023. https://doi.org/10.1016/j.bspc.2024.106023

Ganesh, S., Chithambaram, T., Krishnan, N. R., Vincent, D. R., Kaliappan, J., & Srinivasan, K. (2023). Exploring Huntington’s disease diagnosis via artificial intelligence models: A comprehensive review. Diagnostics, 13(23), 3592. https://doi.org/10.3390/diagnostics13233592

Saravanan, V., Kalangi, R. R., & Thangavel, S. (2024). Unravelling AI and Machine Learning Essentials in Alzheimer's Research. In AI-Driven Alzheimer's Disease Detection and Prediction (pp. 147-159). IGI Global. https://doi.org/10.4018/979-8-3693-3605-2.ch010

Winchester, L. M., Harshfield, E. L., Shi, L., Badhwar, A., Khleifat, A. A., Clarke, N., Dehsarvi, A., Lengyel, I., Lourida, I., Madan, C. R., Marzi, S. J., Proitsi, P., Rajkumar, A. P., Rittman, T., Silajdžić, E., Tamburin, S., Ranson, J. M., & Llewellyn, D. J. (2023). Artificial intelligence for biomarker discovery in Alzheimer's disease and dementia. Alzheimer's & Dementia, 19(12), 5860-5871. https://doi.org/10.1002/alz.13390

Chandrashekhar, A., Parveen, N., A., M., & D., M. (2024). Global initiatives and collaborations in AI for Alzheimer's disease. Advances in Medical Technologies and Clinical Practice, 342-355. https://doi.org/10.4018/979-8-3693-3605-2.ch022

Zaman, Q. (2024). The role of artificial intelligence in early disease detection: transforming diagnostics and treatment. Multidisciplinary Journal of Healthcare (MJH), 1(2), 43-54. https://www.researchcorridor.org/index.php/mjh/article/view/52

Tsang, G., Xie, X., & Zhou, S. (2020). Harnessing the power of machine learning in dementia informatics research: Issues, opportunities, and challenges. IEEE Reviews in Biomedical Engineering, 13, 113-129. https://doi.org/10.1109/rbme.2019.2904488

Gupta, R., Kumari, S., Senapati, A., Ambasta, R. K., & Kumar, P. (2023). New era of artificial intelligence and machine learning-based detection, diagnosis, and therapeutics in Parkinson’s disease. Ageing Research Reviews, 90, 102013. https://doi.org/10.1016/j.arr.2023.102013

Kasula, B. Y. (2023). A machine learning approach for differential diagnosis and prognostic prediction in Alzheimer's disease. International Journal of Sustainable Development in Computing Science, 5(4), 1-8. https://www.ijsdcs.com/index.php/ijsdcs/article/view/397

Ravi, R., Sridevi, T. P., Nirmala Devi, N., & Mandadi, S. (2024). Bridging the gap. Advances in Bioinformatics and Biomedical Engineering, 1-26. https://doi.org/10.4018/979-8-3693-6442-0.ch001

farooq Mohi-U-din, S., Tariq, M., & Tariq, A. (2024). Deep Dive into Health: Harnessing AI and Deep Learning for Brain and Heart Care. International Journal of Advanced Engineering Technologies and Innovations, 1(4), 248-267. https://ijaeti.com/index.php/Journal/article/view/272

Jayachandran, R., Dantapur, B., Antony, A. S., & Nagapadma, R. (2024). Transforming healthcare through smart health systems: Harnessing technology for enhanced patient care. Approaches to Global Sustainability, Markets, and Governance, 107-127. https://doi.org/10.1007/978-981-97-9555-0_6

Nutulapati, N. P., Karunakaran, N. B., Banupriya, V., Sivasundaram, M., & Kaveripakam, V. R. (2024). AI in Neurodegeneration prediction. Advances in Medical Technologies and Clinical Practice, 114-130. https://doi.org/10.4018/979-8-3693-3605-2.ch008

Ishaaq, N., Nafis, M. T., & Reyaz, A. (2024). Leveraging deep learning for early diagnosis of Alzheimer's using comparative analysis of Convolutional neural network techniques. Advances in Medical Diagnosis, Treatment, and Care, 142-155. https://doi.org/10.4018/979-8-3693-3679-3.ch009

Frey, A., Karran, M., Jimenez, R. C., Baxter, J., Adeogun, M., Bose, N., Chan, D., Crawford, J., Dagum, P., Everson, R., Hinds, C., Holmes, C., Kourtzi, Z., Llewellyn, D. J., Mallon, A., Malzbender, K., Milne, R., Mummery, C., Oldham, M., … Routledge, C. (2019). Harnessing the potential of digital technologies for the early detection of neurodegenerative diseases (EDoN). https://doi.org/10.31219/osf.io/u49z5

Lyall, D. M., Kormilitzin, A., Lancaster, C., Sousa, J., Petermann‐Rocha, F., Buckley, C., Harshfield, E. L., Iveson, M. H., Madan, C. R., McArdle, R., Newby, D., Orgeta, V., Tang, E., Tamburin, S., Thakur, L. S., Lourida, I., Llewellyn, D. J., & Ranson, J. M. (2023). Artificial intelligence for dementia—Applied models and digital health. Alzheimer's & Dementia, 19(12), 5872-5884. https://doi.org/10.1002/alz.13391

Rajaraman, S. (2024). Artificial intelligence in Neuro degenerative diseases: Opportunities and challenges. Studies in Computational Intelligence, 133-153. https://doi.org/10.1007/978-3-031-53148-4_8

Mathur, S. and A. Jaiswal, Demystifying the Role of Artificial Intelligence in Neurodegenerative Diseases, in AI and Neuro-Degenerative Diseases: Insights and Solutions. 2024, Springer. p. 1-33.

Mahesh, S., & Ram Mohan, R. K. (2024). Advancing Alzheimer's disease detection with big data and machine learning. Advances in Bioinformatics and Biomedical Engineering, 241-264. https://doi.org/10.4018/979-8-3693-6442-0.ch010

Wankhede, N., Kale, M., Shukla, M., Nathiya, D., R., R., Kaur, P., Goyanka, B., Rahangdale, S., Taksande, B., Upaganlawar, A., Khalid, M., Chigurupati, S., Umekar, M., Kopalli, S. R., & Koppula, S. (2024). Leveraging AI for the diagnosis and treatment of autism spectrum disorder: Current trends and future prospects. Asian Journal of Psychiatry, 101, 104241. https://doi.org/10.1016/j.ajp.2024.104241

Stroud, C., Onnela, J., & Manji, H. (2019). Harnessing digital technology to predict, diagnose, monitor, and develop treatments for brain disorders. npj Digital Medicine, 2(1). https://doi.org/10.1038/s41746-019-0123-z

Aljuhani, M., Ashraf, A., & Edison, P. (2024). Use of artificial intelligence in imaging dementia. Cells, 13(23), 1965. https://doi.org/10.3390/cells13231965

Afreen, Z., Vadlamudi, S., Chandu, U. M., Pasupuleti, L. B., P. V. V. S., S., & V. V. S., S. (2024). Advancing Alzheimer's disease diagnosis leveraging quantum networking with AI and ML-driven CNN models. Advances in Computational Intelligence and Robotics, 203-218. https://doi.org/10.4018/979-8-3693-8135-9.ch012

Downloads

Published

2025-02-18

How to Cite

Harnessing Artificial Intelligence in Early Detection and Diagnosis of Alzheimer’s Disease: Current and Future Applications. (2025). Indus Journal of Bioscience Research, 3(2), 199-212. https://doi.org/10.70749/ijbr.v3i2.665