Prevalence and Antibiotic Resistance Patterns of Staphylococcus Aureus in Dermatological Infections: A 5-Year Retrospective Study

Authors

  • Asma Khan Faculty of Allied Health Sciences, Superior University, Lahore, Punjab, Pakistan.
  • Nasir Ali Indus Hospital and Health Network, Karachi, Sindh, Pakistan.
  • Sameen Fatima Faculty of Allied Health Sciences, Superior University, Lahore, Punjab, Pakistan.
  • Ayesha Jamshaid Faculty of Allied Health Sciences, Superior University, Lahore, Punjab, Pakistan.
  • Akif Saeed Collaborative Care of Diseases (CCD), Susan Road, Faisalabad, Punjab, Pakistan.
  • Muhammad Ali Zahid Department of Medical Laboratory Technology, Fatima Memorial College of Medicine & Dentistry, Lahore, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i2.682

Keywords:

Antibiotic Resistance, Staphylococcus Aureus, Dermatological Infections, Pathogens

Abstract

Background: Staphylococcus aureus (S. aureus) is a leading cause of dermatological infections, with rising methicillin-resistant S. aureus (MRSA) cases posing significant therapeutic challenges. The increasing antibiotic resistance necessitates continuous surveillance to inform treatment strategies. However, limited longitudinal data exist on resistance trends in dermatological infections, especially in tertiary care settings. Objective: This study aimed to assess the prevalence and antibiotic resistance patterns of S. aureus in dermatological infections over a five-year period, identifying risk factors associated with MRSA infections. Methods: A retrospective observational study was conducted from January 2020 to December 2024 in multiple tertiary care hospitals. A total of 850 clinical samples were analyzed. Inclusion criteria included patients diagnosed with dermatological infections, while those with systemic infections were excluded. S. aureus isolates were identified using microbiological and molecular techniques, with antimicrobial susceptibility testing performed per CLSI guidelines. Ethical approval was obtained (IRB No: 2024-0123). Statistical analysis was performed using SPSS v28.0, applying chi-square, t-tests, and logistic regression. Results: MRSA prevalence was 38.9% (331/850), with the highest resistance observed against penicillin (95.3%) and erythromycin (56.7%). Vancomycin and linezolid showed the lowest resistance (5.8% and 4.1%, respectively). Older age (OR: 2.17, p<0.001), prior antibiotic use (OR: 3.84, p<0.001), and hospital-acquired infections (OR: 4.12, p<0.001) were significantly associated with MRSA infections. Conclusion: The increasing MRSA prevalence highlights the urgent need for targeted antimicrobial stewardship and infection control measures. Strengthened surveillance programs and judicious antibiotic use are crucial to mitigating resistance trends. Keywords: Staphylococcus aureus, MRSA, antibiotic resistance, dermatological infections, antimicrobial susceptibility, tertiary care hospitals.

Downloads

Download data is not yet available.

References

Gee, N. R., Rodriguez, K. E., Fine, A. H., & Trammell, J. P. (2021). Dogs supporting human health and well-being: A biopsychosocial approach. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.630465

Martins, E., Maboni, G., Battisti, R., Da Costa, L., Selva, H. L., Levitzki, E. D., & Gressler, L. T. (2022). High rates of multidrug resistance in bacteria associated with small animal otitis: A study of cumulative microbiological culture and antimicrobial susceptibility. Microbial Pathogenesis, 165, 105399. https://doi.org/10.1016/j.micpath.2022.105399

Santaniello, A., Sansone, M., Fioretti, A., & Menna, L. F. (2020). Systematic review and meta-analysis of the occurrence of ESKAPE bacteria group in dogs, and the related zoonotic risk in animal-assisted therapy, and in animal-assisted activity in the health context. International Journal of Environmental Research and Public Health, 17(9), 3278. https://doi.org/10.3390/ijerph17093278

Caneschi, A., Bardhi, A., Barbarossa, A., & Zaghini, A. (2023). The use of antibiotics and antimicrobial resistance in veterinary medicine, a complex phenomenon: A narrative review. Antibiotics, 12(3), 487. https://doi.org/10.3390/antibiotics12030487

Štempelová, L., Kubašová, I., Bujňáková, D., Kačírová, J., Farbáková, J., Maďar, M., Karahutová, L., & Strompfová, V. (2022). Distribution and characterization of staphylococci isolated from healthy canine skin. Topics in Companion Animal Medicine, 49, 100665. https://doi.org/10.1016/j.tcam.2022.100665

Nocera, F. P., Ambrosio, M., Fiorito, F., Cortese, L., & De Martino, L. (2021). On Gram-positive- and Gram-negative-Bacteria-Associated canine and feline skin infections: A 4-Year retrospective study of the University veterinary microbiology diagnostic laboratory of Naples, Italy. Animals, 11(6), 1603. https://doi.org/10.3390/ani11061603

Li, Y., Fernández, R., Durán, I., Molina-López, R. A., & Darwich, L. (2021). Antimicrobial resistance in bacteria isolated from cats and dogs from the Iberian Peninsula. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.621597

Marchetti, L., Buldain, D., Gortari Castillo, L., Buchamer, A., Chirino‐Trejo, M., & Mestorino, N. (2021). Pet and stray dogs as reservoirs of antimicrobial-resistant escherichia coli. International Journal of Microbiology, 2021, 1-8. https://doi.org/10.1155/2021/6664557

Conner, J. G., Smith, J., Erol, E., Locke, S., Phillips, E., Carter, C. N., & Odoi, A. (2018). Temporal trends and predictors of antimicrobial resistance among staphylococcus spp. isolated from canine specimens submitted to a diagnostic laboratory. PLOS ONE, 13(8), e0200719. https://doi.org/10.1371/journal.pone.0200719

Gómez-Beltrán, D. A., Villar, D., López-Osorio, S., Ferguson, D., Monsalve, L. K., & Chaparro-Gutiérrez, J. J. (2020). Prevalence of antimicrobial resistance in bacterial isolates from dogs and cats in a veterinary diagnostic laboratory in Colombia from 2016–2019. Veterinary Sciences, 7(4), 173. https://doi.org/10.3390/vetsci7040173

Leet-Otley, K., Fellman, C. L., Wayne, A. S., Beaulac, K., DeStefano, I. M., Chambers, K., Marino, K. B., & Doron, S. (2023). Demonstrating the importance of local culture and susceptibility data: Antibiograms from dogs at a veterinary tertiary care center. Journal of the American Veterinary Medical Association, 261(7), 1-7. https://doi.org/10.2460/javma.22.12.0545

Petrov, V., Mihaylov, G., Tsachev, I., Zhelev, G., Marutsov, P., & Koev, K. (2013). Otitis externa in dogs: microbiology and antimicrobial susceptibility. Revue Méd. Vét, 164(1), 18-22.

Terziev, G., & Urumova, V. (2017). Retrospective study on the etiology and clinical signs of canine otitis. Comparative Clinical Pathology, 27(1), 7-12. https://doi.org/10.1007/s00580-017-2528-x

Petrov, V., Zhelev, G., Marutsov, P., Koev, K., Georgieva, S., Toneva, I., & Urumova, V. (2019). Microbiological and antibacterial resistance profile in canine otitis externa – a comparative analysis. BULGARIAN JOURNAL OF VETERINARY MEDICINE, 22(4), 447-456. https://doi.org/10.15547/bjvm.2151

Markey, B., Leonard, F., Archambault, M., Cullinane, A., & Maguire, D. (2013). Clinical Veterinary Microbiology E-Book: Clinical Veterinary Microbiology E-Book. Elsevier Health Sciences.

Wayne, P. A. (2015). Clinical and laboratory standards institute (CLSI). Performance standards for antimicrobial susceptibility testing.

Magiorakos, A., Srinivasan, A., Carey, R., Carmeli, Y., Falagas, M., Giske, C., Harbarth, S., Hindler, J., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D., Rice, L., Stelling, J., Struelens, M., Vatopoulos, A., Weber, J., & Monnet, D. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

Guardabassi, L., Damborg, P., Stamm, I., Kopp, P. A., Broens, E. M., & Toutain, P. (2017). Diagnostic microbiology in veterinary dermatology: Present and future. Veterinary Dermatology, 28(1), 146. https://doi.org/10.1111/vde.12414

Rosales, R. S., Ramírez, A. S., Moya-Gil, E., De la Fuente, S. N., Suárez-Pérez, A., & Poveda, J. B. (2024). Microbiological survey and evaluation of antimicrobial susceptibility patterns of microorganisms obtained from suspect cases of canine otitis externa in Gran Canaria, Spain. Animals, 14(5), 742. https://doi.org/10.3390/ani14050742

Bajwa, J. (2023). Malassezia species and its significance in canine skin disease. The Canadian Veterinary Journal, 64(1), 87. https://pmc.ncbi.nlm.nih.gov/articles/PMC9754143/

Tesin, N., Stojanovic, D., Stancic, I., Kladar, N., Ružić, Z., Spasojevic, J., Tomanic, D., & Kovacevic, Z. (2023). Prevalence of the microbiological causes of canine otitis externa and the antibiotic susceptibility of the isolated bacterial strains. Polish Journal of Veterinary Sciences, 449-449. https://doi.org/10.24425/pjvs.2023.145052

Downloads

Published

2025-02-27

How to Cite

Prevalence and Antibiotic Resistance Patterns of Staphylococcus Aureus in Dermatological Infections: A 5-Year Retrospective Study. (2025). Indus Journal of Bioscience Research, 3(2), 386-393. https://doi.org/10.70749/ijbr.v3i2.682