Impact of Dietary Yeast Supplementation on the Antioxidant Enzymes, Digestive Enzymes and Muscle Proximate Composition of Labeo rohita

Authors

  • Hassan Mustafa Institute of Zoology, University of the Punjab, Lahore, Punjab, Pakistan.
  • Arslan Aslam Institute of Quality and Technology Management, University of the Punjab, Lahore, Punjab, Pakistan.
  • Muhammad Ibrahim Institute of Zoology, University of the Punjab, Lahore, Punjab, Pakistan.
  • Zafar Ullah Institute of Zoology, University of the Punjab, Lahore, Punjab, Pakistan.
  • Sohail Nabi Bhat Institute of Zoology, University of the Punjab, Lahore, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i2.696

Keywords:

Antioxidant Enzymes, Digestive Enzymes, Nutritional Enhancement, Antioxidant Activity, Growth Performance, Immune Response

Abstract

The production of aquaculture has expanded rapidly to satisfy the rising demands of an expanding human population and by 2050 additional intensification is anticipated. Active dry yeasts are often used in probiotic products for their immune-stimulatory benefits, provided by vitamins, B-glucans, and nucleotides. The goal of the current study was to determine how dietary yeast used as a feed supplement, affected the muscle composition, digestive enzyme activity and antioxidant enzyme activity of Labeo rohita, taking into account the significance of this readily accessible and affordable source of protein and energy. The current experiment was carried out in indoor tank hatcheries. The current study indicated that adding dietary yeast to Labeo rohita's diet had a positive impact. All treatment groups and control group showed similar results of whole body proximate without any significant difference among treatments. Digestive enzymes analysis like protease with the highest activity observed in T4 (3.53U/mg), followed by T3 (3.31 U/mg), T2 (3.06 U/mg), T1 (2.65 U/mg) and T0 (2.34 U/mg) and amylase activity reaching its peak in T4 (4.84 U/mg), followed by T3 (4.66 U/mg), T2 (4.47 U/mg), T1 (4.32 U/mg) and T0 (4.19 U/mg). While lipase enzyme activity showed a non-significant trend (P > 0.05), indicating no differences between groups, protease and amylase showed significant results that rose significantly (P < 0.05) with larger yeast inclusion levels. Superoxide dismutase (SOD) and catalase enzyme activity were found to differ significantly by antioxidant enzyme analysis (P < 0.05), with T4 having the highest values (18.41 U/mg for SOD and 62.70 U/mg for catalase), and T0 having the lowest (10.87 U/mg for SOD and 55.67 U/mg for catalase). Peroxidase enzyme activity, on the other hand, showed a non-significant trend (P > 0.05) with slight variations between groups.

Downloads

Download data is not yet available.

References

Abdel-Tawwab, M., Abdel-Rahman, A. M., & Ismael, N. E. (2008). Evaluation of commercial live bakers’ yeast, saccharomyces cerevisiae as a growth and immunity promoter for fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture, 280(1-4), 185-189. https://doi.org/10.1016/j.aquaculture.2008.03.055

Abdel-Tawwab, M., Adeshina, I., & Issa, Z. A. (2020). Antioxidants and immune responses, resistance to Aspergilus flavus infection, and growth performance of Nile tilapia, Oreochromis niloticus, fed diets supplemented with yeast, saccharomyces serevisiae. Animal Feed Science and Technology, 263, 114484. https://doi.org/10.1016/j.anifeedsci.2020.114484

Abu-Elala, N., Marzouk, M., & Moustafa, M. (2013). Use of different Saccharomyces cerevisiae biotic forms as immune-modulator and growth promoter for Oreochromis niloticus challenged with some fish pathogens. International Journal of Veterinary Science and Medicine, 1(1), 21-29. https://doi.org/10.1016/j.ijvsm.2013.05.001

AHILAN, B., SHINE, G., & SANTHANAM, R. (2004). Influence of probiotics on the growth and gut microbial load of juvenile goldfish (Carassius auratus). Asian Fisheries Science, 17(4). https://doi.org/10.33997/j.afs.2004.17.4.001

Albro, P. W., Hall, R. D., Corbett, J. T., & Schroeder, J. (1985). Activation of nonspecific lipase (EC 3.1.1.-) by bile salts. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 835(3), 477–490. https://doi.org/10.1016/0005-2760(85)90117-1

Andrews, S. R., Sahu, N. P., Pal, A. K., & Kumar, S. (2009). Haematological modulation and growth of Labeo rohita fingerlings: Effect of dietary Mannan oligosaccharide, yeast extract, protein hydrolysate and chlorella. Aquaculture Research, 41(1), 61-69. https://doi.org/10.1111/j.1365-2109.2009.02304.x

Andrews, S. R., Sahu, N., Pal, A., Mukherjee, S., & Kumar, S. (2011). Yeast extract, brewer’s yeast and spirulina in diets for Labeo rohita fingerlings affect haemato-immunological responses and survival following Aeromonas hydrophila challenge. Research in Veterinary Science, 91(1), 103-109. https://doi.org/10.1016/j.rvsc.2010.08.009

Banerjee, G., & Ray, A. K. (2017). The advancement of probiotics research and its application in fish farming industries. Research in Veterinary Science, 115, 66-77. https://doi.org/10.1016/j.rvsc.2017.01.016

Bertolo, A. P., Biz, A. P., Kempka, A. P., Rigo, E., & Cavalheiro, D. (2019). Yeast (Saccharomyces cerevisiae): evaluation of cellular disruption processes, chemical composition, functional properties and digestibility. Journal of Food Science and Technology, 56, 3697-3706. https://doi.org/10.1007/s13197-019-03833-3

Dahanukar, N. (2010). Labeo rohita. The IUCN red list of threatened species 2010: e. T166619A6248771.

Dawood, M. A., & Koshio, S. (2016). Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture, 454, 243-251. https://doi.org/10.1016/j.aquaculture.2015.12.033

FAO, (2014). FAOSTAT. Food and Agriculture Organization of the United Nations, Rome, Italy.

FAO, (2016). FAO STAT. Food and Agriculture Organization of the United Nations, Rome, Italy.

FAO, (2018). Ethiopia: report on feed inventory and feed balance. FAO, Food and Agriculture Organization of the United Nations, Rome, Italy.

FAO. (2001). The state of food insecurity in the world. FAO, Food and Agriculture Organization of the United Nations, Rome.

FAO. (2018). The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Rome.

FAO. (2019). The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. Rome.

FAO. (2022). The State of Food and Agriculture 2022. Leveraging automation in agriculture for transforming agrifood systems. Rome, FAO.

FAO. (2023). FAO STYLE: English. Second revision. Rome. FAO.

Fellows pp. and Hampton (1992). Fish and fish products Chapter 11 in: Small-scale food processing–A guide for appropriate equipment Intermediate Technology Publications, FAO, Rome.

Fournier, V., Gouillou-Coustans, M., Métailler, R., Vachot, C., Moriceau, J., Le Delliou, H., Huelvan, C., Desbruyeres, E., & Kaushik, S. (2003). Excess dietary arginine affects urea excretion but does not improve N utilisation in rainbow trout oncorhynchus mykiss and turbot Psetta maxima. Aquaculture, 217(1-4), 559-576. https://doi.org/10.1016/s0044-8486(02)00420-9

Ghosh, K., Sen, S. K., & Ray, A. K. (2005). Feed utilization efficiency and growth performance in rohu, Labeo rohita (Hamilton, 1822), fingerlings fed yeast extract powder supplemented diets. Acta Ichthyologica et Piscatoria, 35(2), 111-117. https://doi.org/10.3750/aip2005.35.2.07

Glencross, B. D., Huyben, D., & Schrama, J. W. (2020). The application of single-cell ingredients in aquaculture feeds—A review. Fishes, 5(3), 22. https://doi.org/10.3390/fishes5030022

Gong, Y., Yang, F., Hu, J., Liu, C., Liu, H., Han, D., Jin, J., Yang, Y., Zhu, X., Yi, J., & Xie, S. (2019). Effects of dietary yeast hydrolysate on the growth, antioxidant response, immune response and disease resistance of largemouth bass (Micropterus salmoides). Fish & Shellfish Immunology, 94, 548-557. https://doi.org/10.1016/j.fsi.2019.09.044

Hai, N. V. (2015). Research findings from the use of probiotics in tilapia aquaculture: A review. Fish & Shellfish Immunology, 45(2), 592-597. https://doi.org/10.1016/j.fsi.2015.05.026

Hooper, L., Thompson, R., Harrison, R., Summerbell, C., Higgins, J., Ness, A., Capps, N., Davey, S. G., Riemersma, R., & Ebrahim, S. (2001). Omega-3 fatty acids for prevention of cardiovascular disease. The Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.cd003177

Ibrahem, M. D. (2015). Evolution of probiotics in aquatic world: Potential effects, the current status in Egypt and recent prospectives. Journal of Advanced Research, 6(6), 765-791. https://doi.org/10.1016/j.jare.2013.12.004

ICAR. 2022. Indian council of agricultural research. “Nutritional value of Labeo rohita”. 2022 ICAR India.

Jahan, N., Islam, S. M., Rohani, M. F., Hossain, M. T., & Shahjahan, M. (2021). Probiotic yeast enhances growth performance of rohu (Labeo rohita) through upgrading hematology, and intestinal microbiota and morphology. Aquaculture, 545, 737243. https://doi.org/10.1016/j.aquaculture.2021.737243

Khan, S. U., Lone, A. N., Khan, M. S., Virani, S. S., Blumenthal, R. S., Nasir, K., Miller, M., Michos, E. D., Ballantyne, C. M., Boden, W. E., & Bhatt, D. L. (2021). Effect of omega-3 fatty acids on cardiovascular outcomes: A systematic review and meta-analysis. eClinicalMedicine, 38, 100997. https://doi.org/10.1016/j.eclinm.2021.100997

Kobeisy, M. A., & Hussein, S. Y. (1995, December). Influence of dietary live yeast on growth performance and some blood constituents in Oreochromis niloticus. In Proc. 5th Sci. Conf. Animal Nutrition, Ismailia, Egypt (Vol. 1, pp. 417-625).

Linda, Y. & Cauvain, S. P. (2007). Technology of Breadmaking. Berlin: Springer.

Mahdy, M. A., Jamal, M. T., Al-Harb, M., Al-Mur, B. A., & Haque, M. F. (2022). Use of yeasts in aquaculture nutrition and immunostimulation: A review. Journal of Applied Biology & Biotechnology, 59-65. https://doi.org/10.7324/jabb.2022.100507

Miles, R. D., & FA122, C. F. (2005). The Benefits of Fish Meal in Aquaculture Diets Fisheries and Aquatic Sciences Department, UF/IFAS Extension. Original publication date November.

NACA. (2017). Network of aquaculture centres in Asia-Pacific (NACA). “Status of aquaculture feed in Pakistan”.

NACA. (2019). Network of aquaculture centres in Asia-Pacific (NACA). “Status of aquaculture feed, feed ingredient production and utilization in Pakistan”.

Nargesi, E. A., Falahatkar, B., & Sajjadi, M. M. (2019). Dietary supplementation of probiotics and influence on feed efficiency, growth parameters and reproductive performance in female rainbow trout (Oncorhynchus mykiss) broodstock. Aquaculture Nutrition, 26(1), 98-108. https://doi.org/10.1111/anu.12970

Nityananda Das, Sarita Das, B. K. Khuntia and Brundaban Sahu. 2020. Effect of Feed Probiotic on the Growth and their Colonization Performance on the Intestine of Rohu (Labeo rohita). Int.J.Curr.Microbiol.App.Sci. 9(03): 806-823.

NOAA. (2011). National Oceanic and Atmospheric Administration. What is aquaculture? NOAA’s aquaculture program. Dr. Michael Rubino, 2011.

Oliva-Teles, A., & Gonçalves, P. (2001). Partial replacement of fishmeal by brewers yeast (Saccaromyces cerevisae) in diets for sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 202(3-4), 269-278. https://doi.org/10.1016/s0044-8486(01)00777-3

Paul, B., Chanda, S., Sridhar, N., Saha, G., & Giri, S. (2015). Fatty acid composition of Indian major carps”. Indian Journal of Animal Nutrition, 32(4), 453. https://doi.org/10.5958/2231-6744.2015.00017.1

Ramos, M., Batista, S., Pires, M., Silva, A., Pereira, L., Saavedra, M., Ozório, R., & Rema, P. (2017). Dietary probiotic supplementation improves growth and the intestinal morphology of Nile tilapia. Animal, 11(8), 1259-1269. https://doi.org/10.1017/s1751731116002792

Reda, R. M., & Selim, K. M. (2014). Evaluation of bacillus amyloliquefaciens on the growth performance, intestinal morphology, hematology and body composition of Nile tilapia, Oreochromis niloticus. Aquaculture International, 23(1), 203-217. https://doi.org/10.1007/s10499-014-9809-z

Reda, R. M., Selim, K. M., Mahmoud, R., & El-Araby, I. E. (2018). Effect of dietary yeast nucleotide on antioxidant activity, non-specific immunity, intestinal cytokines, and disease resistance in Nile tilapia. Fish & Shellfish Immunology, 80, 281-290. https://doi.org/10.1016/j.fsi.2018.06.016

Reza, A., Abdolmajid, H., Abbas, M., & Abdolmohammad, A. K. (2009). Effect of dietary prebiotic inulin on growth performance, intestinal microflora, body composition and hematological parameters of juvenile beluga, Huso huso (Linnaeus, 1758). Journal of the World Aquaculture Society, 40(6), 771-779. https://doi.org/10.1111/j.1749-7345.2009.00297.x

Rohu Fish Farming Information Guide | Agri Farming. (2015, August 26). Agri Farming. https://www.agrifarming.in/rohu-fish-farming

Rumsey, G. L., Hughes, S. G., & Kinsella, J. L. (1990). Use of dietary yeast Saccharomyces cerevisiae nitrogen by lake trout. Journal of the World Aquaculture Society, 21(3), 205-209. https://doi.org/10.1111/j.1749-7345.1990.tb01024.x

Safari, R., Adel, M., Lazado, C. C., Caipang, C. M., & Dadar, M. (2016). Host-derived probiotics Enterococcus casseliflavus improves resistance against streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation. Fish & Shellfish Immunology, 52, 198-205. https://doi.org/10.1016/j.fsi.2016.03.020

Shurson, G. C. (2018). Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Animal feed science and technology, 235, 60-76. https://doi.org/10.1016/j.anifeedsci.2017.11.010

Stickney, R.S. 2000. Encyclopedia of aquaculture. New York: John Wiley and Sons, Inc. 56254/344.

Talpur, A. D., Memon, A. J., Khan, M. I., Ikhwanuddin, M., Danish, M. M., & Abol-Munafi, A. B. (2012). Inhibition of pathogens by lactic acid bacteria and application as water additive multi isolates in early stages larviculture of P. pelagicus (Linnaeus, 1758). Journal of Animal and Plant Sciences, 22(1). https://go.gale.com/ps/i.do?id=GALE%7CA287060070&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=10817081&p=AONE&sw=w&userGroupName=anon%7E55d0c2f3&aty=open-web-entry

TDAP. (2022). Fishes cultured in Pakistan. Trade development authority of government of Pakistan. TDAP.

USDA. (2018). United States department of agriculture. Nutrient lists from the USDA National Nutrient Database for Standard Reference (SR) Legacy. USA.

Vidakovic, A., Huyben, D., Sundh, H., Nyman, A., Vielma, J., Passoth, V., Kiessling, A., & Lundh, T. (2019). Growth performance, nutrient digestibility and intestinal morphology of rainbow trout (Oncorhynchus mykiss) fed graded levels of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus. Aquaculture Nutrition, 26(2), 275-286. https://doi.org/10.1111/anu.12988

Welker, T. L., & Lim, C. (2011). Use of probiotics in diets of tilapia. Journal of Aquaculture Research & Development, s1. https://doi.org/10.4172/2155-9546.s1-014

World Bank. (2023). Aquaculture production of Pakistan. Food and agriculture organization statistics. The World Bank data CC BY-4.0.

Yang, X., He, Y., Chi, S., Tan, B., Lin, S., Dong, X., Yang, Q., Liu, H., & Zhang, S. (2020). Supplementation with Saccharomyces cerevisiae hydrolysate in a complex plant protein, low-fishmeal diet improves intestinal morphology, immune function and Vibrio harveyi disease resistance in Epinephelus coioides. Aquaculture, 529, 735655–735655. https://doi.org/10.1016/j.aquaculture.2020.735655

Yu, L., Yu, H., Liang, X., Li, N., Wang, X., Li, F., Wu, X., Zheng, Y., Xue, M., & Liang, X. (2018). Dietary butylated hydroxytoluene improves lipid metabolism, antioxidant and anti-apoptotic response of largemouth bass (Micropterus salmoides). Fish & Shellfish Immunology, 72, 220-229. https://doi.org/10.1016/j.fsi.2017.10.054

Downloads

Published

2025-02-28

How to Cite

Impact of Dietary Yeast Supplementation on the Antioxidant Enzymes, Digestive Enzymes and Muscle Proximate Composition of Labeo rohita. (2025). Indus Journal of Bioscience Research, 3(2), 408-416. https://doi.org/10.70749/ijbr.v3i2.696