CRISPR-Cas9 Gene Editing for Targeting Cancer Stem Cells in Glioblastoma Multiforme
DOI:
https://doi.org/10.70749/ijbr.v3i2.712Keywords:
CRISPR-Cas9, Cancer Stem Cells, Glioblastoma MultiformeAbstract
This research investigates the possibility of CRISPR-Cas9 gene editing in targeting glioblastoma multiforme (GBM) cancer stem cells (CSCs) for increasing CSC sensitivity to conventional treatments and suppressing tumor growth. A quantitative method was used, with a sample of 36 GBM patients diagnosed and treated at major tertiary care centers in Pakistan, namely Aga Khan University Hospital (Karachi), Shaukat Khanum Memorial Cancer Hospital (Lahore), and Pakistan Institute of Medical Sciences (Islamabad). Tumor tissue samples were obtained at the time of surgical resection and processed to harvest CSCs based on certain markers like CD133 and Nestin using fluorescence-activated cell sorting (FACS). The CRISPR-Cas9 gene editing was subsequently conducted on isolated CSCs to knock out genes of interest involved in stemness and therapy resistance, such as SOX2, MGMT, and Wnt/β-catenin. The efficacy of CRISPR-Cas9 gene editing was evaluated by pre- and post-CRISPR tumor growth rates, proliferation assays in vitro, and neurosphere formation. Multiple regression analysis showed that CRISPR-Cas9 gene editing greatly enhanced therapy sensitivity (B = 1.427, p = 0.000), with pre-CRISPR tumor growth rate (B = -0.512, p = 0.009) and initial tumor size (B = -0.312, p = 0.040) having a negative correlation with the efficacy of treatment. Moreover, increased MGMT expression (B = -0.312, p = 0.050) was related to decreased therapy sensitivity. ANOVA test showed significant variability among the efficacies of different delivery methods for CRISPR-Cas9, including viral vectors, nanoparticles, and electroporation (F = 4.56, p = 0.008), and pointed towards optimizing the delivery strategies to achieve efficient gene editing. CRISPR-Cas9 shows promise for GBM treatment, but delivery issues and off-target effects need resolution to enable future clinical applications.
Downloads
References
Al-Sammarraie, N., & Ray, S. K. (2021). Applications of CRISPR-cas9 technology to genome editing in glioblastoma Multiforme. Cells, 10(9), 2342. https://doi.org/10.3390/cells10092342
Fierro, J., DiPasquale, J., Perez, J., Chin, B., Chokpapone, Y., Tran, A. M., Holden, A., Factoriza, C., Sivagnanakumar, N., Aguilar, R., Mazal, S., Lopez, M., & Dou, H. (2022). Dual-sgrna CRISPR/Cas9 knockout of PD-L1 in human U87 glioblastoma tumor cells inhibits proliferation, invasion, and tumor-associated macrophage polarization. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-06430-1
Rouatbi, N., Walters, A. A., Costa, P. M., Qin, Y., Liam-Or, R., Grant, V., Pollard, S. M., Wang, J. T., & Al-Jamal, K. T. (2024). RNA lipid nanoparticles as efficient in vivo CRISPR-cas9 gene editing tool for therapeutic target validation in glioblastoma cancer stem cells. Journal of Controlled Release, 375, 776-787. https://doi.org/10.1016/j.jconrel.2024.09.019
Begagi?, E., Be?uli?, H., ?uzi?, N., Džidi?-Krivi?, A., Pugonja, R., Muharemovi?, A., Jaganjac, B., Salkovi?, N., Sefo, H., & Pojski?, M. (2024). CRISPR/cas9-mediated gene therapy for glioblastoma: A scoping review. Biomedicines, 12(1), 238. https://doi.org/10.3390/biomedicines12010238
Glaser, T., Han, I., Wu, L., & Zeng, X. (2017). Targeted nanotechnology in glioblastoma Multiforme. Frontiers in Pharmacology, 8. https://doi.org/10.3389/fphar.2017.00166
Ruan, W., Jiao, M., Xu, S., Ismail, M., Xie, X., An, Y., Guo, H., Qian, R., Shi, B., & Zheng, M. (2022). Brain-targeted CRISPR/Cas9 nanomedicine for effective glioblastoma therapy. Journal of Controlled Release, 351, 739-751. https://doi.org/10.1016/j.jconrel.2022.09.046
MacLeod, G., Bozek, D. A., Rajakulendran, N., Monteiro, V., Ahmadi, M., Steinhart, Z., Kushida, M. M., Yu, H., Coutinho, F. J., Cavalli, F. M., Restall, I., Hao, X., Hart, T., Luchman, H. A., Weiss, S., Dirks, P. B., & Angers, S. (2019). Genome-wide CRISPR-cas9 screens expose genetic vulnerabilities and mechanisms of Temozolomide sensitivity in glioblastoma stem cells. Cell Reports, 27(3), 971-986.e9. https://doi.org/10.1016/j.celrep.2019.03.047
Ghani, A. R., Yahya, E. B., Allaq, A. A., & Khalil, A. S. (2022). Novel insights into genetic approaches in glioblastoma Multiforme therapy. Biomedical Research and Therapy, 9(1), 4851-4864. https://doi.org/10.15419/bmrat.v9i1.722
Tran, A., Fierro, J., & Dou, H. (2020). Csig-11. Targeting PD-l1 in glioblastoma using nanoparticle-based gene editing. Neuro-Oncology, 22(Supplement_2), ii29-ii30. https://doi.org/10.1093/neuonc/noaa215.123
Radtke, L., Majchrzak-Celi?ska, A., Awortwe, C., Vater, I., Nagel, I., Sebens, S., Cascorbi, I., & Kaehler, M. (2022). CRISPR/cas9-induced knockout reveals the role of ABCB1 in the response to temozolomide, carmustine and lomustine in glioblastoma multiforme. Pharmacological Research, 185, 106510. https://doi.org/10.1016/j.phrs.2022.106510
Ohtsu, N., & Katayama, S. (2024). A more efficient method for generating glioblastoma-multiforme model in mice using genome editing technology. Biochemical and Biophysical Research Communications, 702, 149657. https://doi.org/10.1016/j.bbrc.2024.149657
Hasanzadeh, A., Ebadati, A., Dastanpour, L., Aref, A. R., Sahandi Zangabad, P., Kalbasi, A., Dai, X., Mehta, G., Ghasemi, A., Fatahi, Y., Joshi, S., Hamblin, M. R., & Karimi, M. (2023). Applications of innovation technologies for personalized cancer medicine: Stem cells and gene-editing tools. ACS Pharmacology & Translational Science, 6(12), 1758-1779. https://doi.org/10.1021/acsptsci.3c00102
Aguilar, R., Fierro, J., Perez, J., & Dou, H. (2021). OMRT-12. nanoparticle-based CRISPR-cas9 delivery for anti-glioblastoma immunotherapy. Neuro-Oncology Advances, 3(Supplement_2), ii9-ii9. https://doi.org/10.1093/noajnl/vdab070.036
Manea, A. J., & Ray, S. K. (2023). Advanced bioinformatics analysis and genetic technologies for targeting autophagy in glioblastoma Multiforme. Cells, 12(6), 897. https://doi.org/10.3390/cells12060897
Sun, T., Patil, R., Galstyan, A., Klymyshyn, D., Ding, H., Chesnokova, A., ... & Ljubimova, J. Y. (2019). Blockade of a laminin-411-notch axis with CRISPR/Cas9 or a nanobioconjugate inhibits glioblastoma growth through tumor-microenvironment cross-talk. Cancer research, 79(6), 1239-1251. https://doi.org/10.1158/0008-5472.CAN-18-2725
Lindvall, J. (2016). Green and red fluorescent protein tagging of endogenous proteins in glioblastoma using the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1069467&dswid=3001
Rayati, M., Mansouri, V., & Ahmadbeigi, N. (2024). Gene therapy in glioblastoma multiforme: Can it be a role changer? Heliyon, 10(5), e27087. https://doi.org/10.1016/j.heliyon.2024.e27087
Chen, J., Dai, Q., Yang, Q., Bao, X., Zhou, Y., Zhong, H., Wu, L., Wang, T., Zhang, Z., Lu, Y., Zhang, Z., Lin, M., Han, M., & Wei, Q. (2022). Therapeutic nucleus-access BNCT drug combined CD47-targeting gene editing in glioblastoma. Journal of Nanobiotechnology, 20(1). https://doi.org/10.1186/s12951-022-01304-0
Ghasemi, S., & Dashtaki, M. E. (2023). CRISPR/cas9-based gene therapies for fighting drug resistance mediated by cancer stem cells. Current Gene Therapy, 23(1), 41-50. https://doi.org/10.2174/1566523222666220831161225
Feng, J. (2023). The application of CRISPR-Cas system in glioblastoma research and treatment. BIO Web of Conferences, 60, 01011. https://doi.org/10.1051/bioconf/20236001011
Hamada, T., Yokoyama, S., Akahane, T., Matsuo, K., & Tanimoto, A. (2022). Genome editing using Cas9 Ribonucleoprotein is effective for introducing PDGFRA variant in cultured human glioblastoma cell lines. International Journal of Molecular Sciences, 24(1), 500. https://doi.org/10.3390/ijms24010500
Marei, H. E. (2022). Multimodal targeting of glioma with functionalized nanoparticles. Cancer Cell International, 22(1). https://doi.org/10.1186/s12935-022-02687-8
Huang, J., Wang, J., Ramsey, E., Leavey, G., Chico, T. J., & Condell, J. (2022). Applying artificial intelligence to wearable sensor data to diagnose and predict cardiovascular disease: A review. Sensors, 22(20), 8002. https://doi.org/10.3390/s22208002
Hazra, R., Debnath, R., & Tuppad, A. (2024). Glioblastoma stem cell long non-coding RNAs: Therapeutic perspectives and opportunities. Frontiers in Genetics, 15. https://doi.org/10.3389/fgene.2024.1416772
Agosti, E., Antonietti, S., Ius, T., Fontanella, M. M., Zeppieri, M., & Panciani, P. P. (2024). Glioma stem cells as promoter of glioma progression: A systematic review of molecular pathways and targeted therapies. International Journal of Molecular Sciences, 25(14), 7979. https://doi.org/10.3390/ijms25147979
Turnsek, T. L., Breznik, B., Majc, B., Novak, M., Por?nik, A., Habi?, A., Mlinar, M., & Bošnjak, R. (2021). OMRT-11. The effect of microenvironment on glioblastoma stem cells therapeutic resistance. Neuro-Oncology Advances, 3(Supplement_2), ii9-ii9. https://doi.org/10.1093/noajnl/vdab070.035
Rosenblum, D., Gutkin, A., Kedmi, R., Ramishetti, S., Veiga, N., Jacobi, A. M., Schubert, M. S., Friedmann-Morvinski, D., Cohen, Z. R., Behlke, M. A., Lieberman, J., & Peer, D. (2020). CRISPR-cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Science Advances, 6(47). https://doi.org/10.1126/sciadv.abc9450
Tian, S. (2020). A Pooled CRISPR Based Screen for Essential Kinases in GBM Stem Cells & Effect of Resting Membrane Potential on the Proliferation and Differentiation of GBM Stem Cells (Master's thesis, Tufts University-Graduate School of Biomedical Sciences). https://www.proquest.com/openview/c2913fvASSMp75GdVBKQjzecEkUynnCekVvG1/1?pq-origsite=gscholar&cbl=18750&diss=y
Sowmya, S. V., Augustine, D., Mushtaq, S., Baeshen, H. A., Ashi, H., Hassan, R. N., ... & Patil, S. (2024). Revitalizing oral cancer research: Crispr-Cas9 technology the promise of genetic editing. Frontiers in Oncology, 14, 1383062. https://pmc.ncbi.nlm.nih.gov/articles/PMC11194394/
Ohtsu, N. (2022). Induction of tumor-initiating cells and glioma-initiating cells from fetal neural stem cells through p53 genome editing. https://doi.org/10.1101/2022.02.24.481795
Oldrini, B., Curiel-García, Á., Marques, C., Matia, V., Uluçkan, Ö., Graña-Castro, O., Torres-Ruiz, R., Rodriguez-Perales, S., Huse, J. T., & Squatrito, M. (2018). Somatic genome editing with the RCAS-TVA-CRISPR-Cas9 system for precision tumor modeling. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03731-w
Sahel, D. K., Vora, L. K., Saraswat, A., Sharma, S., Monpara, J., D'Souza, A. A., Mishra, D., Tryphena, K. P., Kawakita, S., Khan, S., Azhar, M., Khatri, D. K., Patel, K., & Singh Thakur, R. R. (2023). CRISPR/Cas9 genome editing for tissue?specific in vivo targeting: Nanomaterials and translational perspective. Advanced Science, 10(19). https://doi.org/10.1002/advs.202207512
Korleski, J., Shudir, S., Caputo, C., Lal, B., Rui, Y., Green, J., Lopez-Bertoni, H., & Laterra, J. (2021). Stem-07. Prc2 maintains a cancer stem cell phenotype in glioblastoma MULTIFORME via chromatin modification of H3K27me3. Neuro-Oncology, 23(Supplement_6), vi22-vi22. https://doi.org/10.1093/neuonc/noab196.082
Banerjee, D., Bhattacharya, A., Puri, A., Munde, S., Mukerjee, N., Mohite, P., Kazmi, S. W., Sharma, A., Alqahtani, T., & Shmrany, H. A. (2024). Innovative approaches in stem cell therapy: Revolutionizing cancer treatment and advancing neurobiology - a comprehensive review. International Journal of Surgery, 110(12), 7528-7545. https://doi.org/10.1097/js9.0000000000002111
Yousefi, Y., Nejati, R., Eslahi, A., Alizadeh, F., Farrokhi, S., Asoodeh, A., & Mojarrad, M. (2024). Enhancing Temozolomide (TMZ) chemosensitivity using CRISPR-dcas9-mediated downregulation of O6-methylguanine DNA methyltransferase (MGMT). Journal of Neuro-Oncology, 169(1), 129-135. https://doi.org/10.1007/s11060-024-04708-0
Pintor, S., Lopez, A., Flores, D., Lozoya, B., Soti, B., Pokhrel, R., Negrete, J., Persans, M. W., Gilkerson, R., Gunn, B., & Keniry, M. (2023). FOXO1 promotes the expression of canonical WNT target genes in examined basal?like breast and glioblastoma multiforme cancer cells. FEBS Open Bio, 13(11), 2108-2123. https://doi.org/10.1002/2211-5463.13696
Ho, N. T., Rahane, C. S., Pramanik, S., Kim, P., Kutzner, A., & Heese, K. (2021). FAM72, glioblastoma Multiforme (GBM) and beyond. Cancers, 13(5), 1025. https://doi.org/10.3390/cancers13051025
Bulstrode, H., Johnstone, E., Marques-Torrejon, M. A., Ferguson, K. M., Bressan, R. B., Blin, C., Grant, V., Gogolok, S., Gangoso, E., Gagrica, S., Ender, C., Fotaki, V., Sproul, D., Bertone, P., & Pollard, S. M. (2017). Elevated FOXG1 and SOX2 in glioblastoma enforces neural stem cell identity through transcriptional control of cell cycle and epigenetic regulators. Genes & Development, 31(8), 757-773. https://doi.org/10.1101/gad.293027.116
Cortés Franco, K., Brakmann, I. C., Feoktistova, M., Panayotova-Dimitrova, D., Gründer, S., & Tian, Y. (2022). Aggressive migration in acidic pH of a glioblastoma cancer stem cell line in vitro is independent of ASIC and KCa3.1 ion channels, but involves phosphoinositide 3-kinase. Pflügers Archiv - European Journal of Physiology, 475(3), 405-416. https://doi.org/10.1007/s00424-022-02781-w
Lu, Y., Godbout, K., Lamothe, G., & Tremblay, J. P. (2023). CRISPR-cas9 delivery strategies with engineered extracellular vesicles. Molecular Therapy - Nucleic Acids, 34, 102040. https://doi.org/10.1016/j.omtn.2023.102040
Yi, K., Kong, H., Lao, Y., Li, D., Mintz, R. L., Fang, T., Chen, G., Tao, Y., Li, M., & Ding, J. (2024). Engineered nanomaterials to potentiate CRISPR/Cas9 gene editing for cancer therapy (Adv. Mater. 13/2024). Advanced Materials, 36(13). https://doi.org/10.1002/adma.202470097
Shaim, H., Shanley, M., Basar, R., Daher, M., Gumin, J., Zamler, D. B., Uprety, N., Wang, F., Huang, Y., Gabrusiewicz, K., Miao, Q., Dou, J., Alsuliman, A., Kerbauy, L. N., Acharya, S., Mohanty, V., Mendt, M., Li, S., Lu, J., … Rezvani, K. (2021). Targeting the ?v integrin/TGF-? axis improves natural killer cell function against glioblastoma stem cells. Journal of Clinical Investigation, 131(14). https://doi.org/10.1172/jci142116
Wang, Y., Yang, C. H., Schultz, A. P., Sims, M. M., Miller, D. D., & Pfeffer, L. M. (2021). Brahma?related gene?1 (BRG1) promotes the malignant phenotype of glioblastoma cells. Journal of Cellular and Molecular Medicine, 25(6), 2956-2966. https://doi.org/10.1111/jcmm.16330
Seymour, T., Nowak, A., & Kakulas, F. (2015). Targeting aggressive cancer stem cells in glioblastoma. Frontiers in Oncology, 5. https://doi.org/10.3389/fonc.2015.00159
Jiang, X., Fitch, S., Wang, C., Wilson, C., Li, J., Grant, G. A., & Yang, F. (2016). Nanoparticle engineered TRAIL-overexpressing adipose-derived stem cells target and eradicate glioblastoma via intracranial delivery. Proceedings of the National Academy of Sciences, 113(48), 13857-13862. https://doi.org/10.1073/pnas.1615396113
Ryskalin, L., Gaglione, A., Limanaqi, F., Biagioni, F., Familiari, P., Frati, A., Esposito, V., & Fornai, F. (2019). The autophagy status of cancer stem cells in Gliobastoma Multiforme: From cancer promotion to therapeutic strategies. International Journal of Molecular Sciences, 20(15), 3824. https://doi.org/10.3390/ijms20153824
BRYUKHOVETSKIY, I., BRYUKHOVETSKIY, A., KHOTIMCHENKO, Y., & MISCHENKO, P. (2015). Novel cellular and post-genomic technologies in the treatment of glioblastoma multiforme (Review). Oncology Reports, 35(2), 639-648. https://doi.org/10.3892/or.2015.4404
Pallini, R., Ricci-Vitiani, L., Banna, G. L., Signore, M., Lombardi, D., Todaro, M., Stassi, G., Martini, M., Maira, G., Larocca, L. M., & De Maria, R. (2008). Cancer stem cell analysis and clinical outcome in patients with glioblastoma Multiforme. Clinical Cancer Research, 14(24), 8205-8212. https://doi.org/10.1158/1078-0432.ccr-08-0644
Wakimoto, H., Kesari, S., Farrell, C. J., Curry, W. T., Zaupa, C., Aghi, M., Kuroda, T., Stemmer-Rachamimov, A., Shah, K., Liu, T., Jeyaretna, D. S., Debasitis, J., Pruszak, J., Martuza, R. L., & Rabkin, S. D. (2009). Human glioblastoma-derived cancer stem cells: Establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Research, 69(8), 3472-3481. https://doi.org/10.1158/0008-5472.can-08-3886
Facchino, S., Abdouh, M., & Bernier, G. (2011). Brain cancer stem cells: Current status on glioblastoma Multiforme. Cancers, 3(2), 1777-1797. https://doi.org/10.3390/cancers3021777
Hersh, A. M., Gaitsch, H., Alomari, S., Lubelski, D., & Tyler, B. M. (2022). Molecular pathways and Genomic landscape of glioblastoma stem cells: Opportunities for targeted therapy. Cancers, 14(15), 3743. https://doi.org/10.3390/cancers14153743
Muir, M., Gopakumar, S., Traylor, J., Lee, S., & Rao, G. (2020). Glioblastoma multiforme: Novel therapeutic targets. Expert Opinion on Therapeutic Targets, 24(7), 605-614. https://doi.org/10.1080/14728222.2020.1762568
Jhanwar-Uniyal, M., Labagnara, M., Friedman, M., Kwasnicki, A., & Murali, R. (2015). Glioblastoma: Molecular pathways, stem cells and therapeutic targets. Cancers, 7(2), 538-555. https://doi.org/10.3390/cancers7020538
Cheema, T. A., Wakimoto, H., Fecci, P. E., Ning, J., Kuroda, T., Jeyaretna, D. S., Martuza, R. L., & Rabkin, S. D. (2013). Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proceedings of the National Academy of Sciences, 110(29), 12006-12011. https://doi.org/10.1073/pnas.1307935110
Emlet, D. R., Gupta, P., Holgado-Madruga, M., Del Vecchio, C. A., Mitra, S. S., Han, S., Li, G., Jensen, K. C., Vogel, H., Xu, L. W., Skirboll, S. S., & Wong, A. J. (2014). Targeting a glioblastoma cancer stem-cell population defined by EGF receptor variant III. Cancer Research, 74(4), 1238-1249. https://doi.org/10.1158/0008-5472.can-13-1407
Sahoo, O. S., Mitra, R., & Nagaiah, N. K. (2024). The hidden architects of glioblastoma multiforme: Glioma stem cells. MedComm - Oncology, 3(1). https://doi.org/10.1002/mog2.66
Auffinger, B., Spencer, D., Pytel, P., Ahmed, A. U., & Lesniak, M. S. (2015). The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Review of Neurotherapeutics, 15(7), 741-752. https://doi.org/10.1586/14737175.2015.1051968
FRIEDMAN, M. D., JEEVAN, D. S., TOBIAS, M., MURALI, R., & JHANWAR-UNIYAL, M. (2013). Targeting cancer stem cells in glioblastoma multiforme using mTOR inhibitors and the differentiating agent all-trans retinoic acid. Oncology Reports, 30(4), 1645-1650. https://doi.org/10.3892/or.2013.2625
Aldoghachi, A. F., Aldoghachi, A. F., Breyne, K., Ling, K., & Cheah, P. (2022). Recent advances in the therapeutic strategies of glioblastoma Multiforme. Neuroscience, 491, 240-270. https://doi.org/10.1016/j.neuroscience.2022.03.030
Huszthy, P. C., Giroglou, T., Tsinkalovsky, O., Euskirchen, P., Skaftnesmo, K. O., Bjerkvig, R., Von Laer, D., & Miletic, H. (2009). Remission of invasive, cancer stem-like glioblastoma xenografts using Lentiviral vector-mediated suicide gene therapy. PLoS ONE, 4(7), e6314. https://doi.org/10.1371/journal.pone.0006314
Mazor, G., Levin, L., Picard, D., Ahmadov, U., Carén, H., Borkhardt, A., Reifenberger, G., Leprivier, G., Remke, M., & Rotblat, B. (2019). The lncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Cell Death & Disease, 10(3). https://doi.org/10.1038/s41419-019-1477-5
Howard, C. M., Valluri, J., Alberico, A., Julien, T., Mazagri, R., Marsh, R., Alastair, H., Cortese, A., Griswold, M., Wang, W., Denning, K., Brown, L., & Claudio, P. P. (2017). Analysis of Chemopredictive Assay for Targeting Cancer Stem Cells in Glioblastoma Patients. Translational Oncology, 10(2), 241-254. https://doi.org/10.1016/j.tranon.2017.01.008
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.