Mitochondrial Dysfunction in Neurodegenerative Diseases: Exploring Therapeutic Approaches for Parkinson's Disease

Authors

  • Saifullah Khan Mahar Shifa Ul Mulk Memorial Hospital, Hamdard University, Karachi, Sindh, Pakistan.
  • Amara Medical Emergency Resilience Foundation, Jacobabad, Sindh, Pakistan.
  • Khizer Yaseen Hamdard College of Medicine and Dentistry, Hamdard University, Karachi, Sindh, Pakistan.
  • Agha Mohammad Amin Jan Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, Sindh, Pakistan.
  • Ammara Ali Shifa Ul Mulk Memorial Hospital, Hamdard University, Karachi, Sindh, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i2.716

Keywords:

Parkinson’s Disease, Mitochondrial Dysfunction, Oxidative Stress, Disease Progression, Clinical Outcomes, Personalized Treatment, Biomarkers

Abstract

Parkinson ’s disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of misfolded α-synuclein protein aggregates. A central aspect of PD pathophysiology is mitochondrial dysfunction and the resulting oxidative stress, both of which contribute to neuronal degeneration and disease progression. A total of 121 PD patients were included in the sample, selected using snowball sampling techniques. Data were collected through structured interviews and medical records, ensuring the inclusion of demographic information, disease duration, disease stage, and current treatment regimens. The demographic analysis revealed that the majority of participants were male (53.7%), with the highest age group falling in the 60-69 years range (33.1%). The disease duration varied, with most patients (45.5%) being diagnosed within the last 5 years. The study also explored comorbidities, with hypertension (41.3%) being the most common, followed by diabetes (24.8%) and cardiovascular disease (16.5%). This study aimed to explore the relationship between mitochondrial dysfunction, oxidative stress, and clinical outcomes in PD patients, as well as to examine the potential influence of disease stage on treatment choices. A total of 121 patients from major hospitals in Pakistan participated in the study, with demographic data, including age, gender, disease duration, and stage of the disease, being collected. Statistical analysis, including correlation, multiple regression, and Chi-Square tests, revealed significant correlations between mitochondrial dysfunction, oxidative stress, and disease severity in PD. Oxidative stress exerted a stronger influence on outcomes and was identified as a major contributor in regression analysis. No significant association was found between disease stage and medication type. These results emphasize the importance of targeting mitochondrial dysfunction and oxidative stress. Future research should develop therapies to restore mitochondrial function and reduce oxidative stress to slow disease progression.

Downloads

Download data is not yet available.

References

Sajal, I. (2024). Exploring The Impact of AI in Disease Detection and Analyzing the Landscape of Health Infrastructure in Pakistan (Doctoral dissertation, School of Social Sciences & Humanities, S3H-NUST). http://10.250.8.41:8080/xmlui/handle/123456789/46386

Naseem, M., Akhund, R., Arshad, H., & Ibrahim, M. T. (2020). Exploring the potential of artificial intelligence and machine learning to combat COVID-19 and existing opportunities for LMIC: A scoping review. Journal of Primary Care & Community Health, 11. https://doi.org/10.1177/2150132720963634

Zuhair, V., Babar, A., Ali, R., Oduoye, M. O., Noor, Z., Chris, K., Okon, I. I., & Rehman, L. U. (2024). Exploring the impact of artificial intelligence on global health and enhancing healthcare in developing nations. Journal of Primary Care & Community Health, 15. https://doi.org/10.1177/21501319241245847

Javed, I. (2024). Exploring the Role of Big Data in Predicting and Preventing Epidemics. Frontiers in Healthcare Technology, 1(01), 46-57.

Hafeez, A., Dangel, W. J., Ostroff, S. M., Kiani, A. G., Glenn, S. D., Abbas, J., ... & Mokdad, A. H. (2023). The state of health in Pakistan and its provinces and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet Global Health, 11(2), e229-e243. https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(22)00497-1/fulltext

Farhat, R., Abideen Malik, A. R., Sheikh, A. H., & Noor Fatima, A. (2024). The role of AI in enhancing healthcare access and service quality in resource-limited settings. International Journal of Artificial Intelligence, 11(2), 70-79. https://doi.org/10.36079/lamintang.ijai-01102.709

Khalique, F., & Khan, S. A. (2021). Multiple disease hotspot mining for public health informatics in resource starved settings: Study of communicable diseases in Punjab, Pakistan. IEEE Access, 9, 89989-89998. https://doi.org/10.1109/access.2021.3091655

Aamir, A., Iqbal, A., Jawed, F., Ashfaque, F., Hafsa, H., Anas, Z., Oduoye, M. O., Basit, A., Ahmed, S., Abdul Rauf, S., Khan, M., & Mansoor, T. (2024). Exploring the current and prospective role of artificial intelligence in disease diagnosis. Annals of Medicine & Surgery, 86(2), 943-949. https://doi.org/10.1097/ms9.0000000000001700

Rabaan, A. A., Alhumaid, S., Mutair, A. A., Garout, M., Abulhamayel, Y., Halwani, M. A., Alestad, J. H., Bshabshe, A. A., Sulaiman, T., AlFonaisan, M. K., Almusawi, T., Albayat, H., Alsaeed, M., Alfaresi, M., Alotaibi, S., Alhashem, Y. N., Temsah, M., Ali, U., & Ahmed, N. (2022). Application of artificial intelligence in combating high antimicrobial resistance rates. Antibiotics, 11(6), 784. https://doi.org/10.3390/antibiotics11060784

Latif, S., Usman, M., Manzoor, S., Iqbal, W., Qadir, J., Tyson, G., Castro, I., Razi, A., Boulos, M. N., Weller, A., & Crowcroft, J. (2020). Leveraging data science to combat COVID-19: A comprehensive review. IEEE Transactions on Artificial Intelligence, 1(1), 85-103. https://doi.org/10.1109/tai.2020.3020521

Ali, M., Ahsan, Z., Amin, M., Latif, S., Ayyaz, A., & Ayyaz, M. (2016). ID-viewer: A visual analytics architecture for infectious diseases surveillance and response management in Pakistan. Public Health, 134, 72-85. https://doi.org/10.1016/j.puhe.2016.01.006

Saleem, S. (2023). Power, politics, and public health: understanding the role of healthcare expenditure in shaping health outcomes in Pakistan for policy enhancement. Politica, 2(1), 58-72.

Ahmad, J. B., & Hussain, M. A. (2023). Using Artificial Intelligence (AI) in Cultural Diplomacy and Public Sector of Pakistan. Pakistan Perspectives, 28(2), 37. https://www.proquest.com/openview/5f5677355be085f5787a3f978639b894/1?pq-origsite=gscholar&cbl=616532

Din, S. S. U., Ali, M., Rashid, U., Akbar, A. J., & Abid, M. K. (2023). Navigating an Optimization Path for Decision-Making in Management within The Big Data Environment of Chinese Public Hospitals. International Journal of Information Systems and Computer Technologies, 2(2), 61-77. https://doi.org/10.58325/ijisct.002.02.0061

Tapur, A., Ishtiaque, M., FengYi, J., Mansab, M., & Bakhtiar, J. (2024). Artificial Intelligence in Healthcare: Ethical Considerations and Potential Impact in Pakistan. International Journal of Social Science Archives (IJSSA), 7(3).

Qureshi, R., Irfan, M., Ali, H., Khan, A., Nittala, A. S., Ali, S., Shah, A., Gondal, T. M., Sadak, F., Shah, Z., Hadi, M. U., Khan, S., Al-Tashi, Q., Wu, J., Bermak, A., & Alam, T. (2023). Artificial intelligence and biosensors in healthcare and its clinical relevance: A review. IEEE Access, 11, 61600-61620. https://doi.org/10.1109/access.2023.3285596

Oduoye, M. O., Fatima, E., Muzammil, M. A., Dave, T., Irfan, H., Fariha, F. N., Marbell, A., Ubechu, S. C., Scott, G. Y., & Elebesunu, E. E. (2024). Impacts of the advancement in artificial intelligence on laboratory medicine in low‐ and middle‐income countries: Challenges and recommendations—A literature review. Health Science Reports, 7(1). https://doi.org/10.1002/hsr2.1794

Santamato, V., Tricase, C., Faccilongo, N., Iacoviello, M., & Marengo, A. (2024). Exploring the impact of artificial intelligence on healthcare management: A combined systematic review and machine-learning approach. Applied Sciences, 14(22), 10144. https://doi.org/10.3390/app142210144

Shoukat, K., Jian, M., Umar, M., Kalsoom, H., Sijjad, W., Atta, S. H., & Ullah, A. (2023). Use of digital transformation and artificial intelligence strategies for pharmaceutical industry in Pakistan: Applications and challenges. Artificial Intelligence in Health, 1(1), 1486. https://doi.org/10.36922/aih.1486

Yousif, M., Asghar, S., Akbar, J., Masood, I., Arshad, M. R., Naeem, J., Azam, A., & Iqbal, Z. (2024). Exploring the perspectives of healthcare professionals regarding artificial intelligence; acceptance and challenges. BMC Health Services Research, 24(1). https://doi.org/10.1186/s12913-024-11667-9

Bangash, S. H., Khan, I., Husnain, G., Irfan, M. A., & Iqbal, A. (2024). Revolutionizing healthcare with smarter AI: In-depth exploration of advancements, challenges, and future directions. VFAST Transactions on Software Engineering, 12(1), 152-168. https://doi.org/10.21015/vtse.v12i1.1760

Imran, M., Zaman, U., Imran, Imtiaz, J., Fayaz, M., & Gwak, J. (2021). Comprehensive survey of IoT, machine learning, and blockchain for health care applications: A topical assessment for pandemic preparedness, challenges, and solutions. Electronics, 10(20), 2501. https://doi.org/10.3390/electronics10202501

Ramezani, M., Takian, A., Bakhtiari, A., Rabiee, H. R., Ghazanfari, S., & Mostafavi, H. (2023). The application of artificial intelligence in health policy: A scoping review. BMC Health Services Research, 23(1). https://doi.org/10.1186/s12913-023-10462-2

Tshimula, J. M., Kalengayi, M., Makenga, D., Lilonge, D., Asumani, M., Madiya, D., ... & Kasoro, N. M. (2024). Artificial Intelligence for Public Health Surveillance in Africa: Applications and Opportunities. arXiv preprint arXiv:2408.02575. https://doi.org/10.48550/arXiv.2408.02575

Wilson, D., Sheikh, A., Görgens, M., & Ward, K. (2021). Technology and universal health coverage: Examining the role of digital health. Journal of Global Health, 11. https://doi.org/10.7189/jogh.11.16006

Tahir, B., & Amir Mehmood, M. (2025). TepiSense: A social computing-based real-time epidemic surveillance system using artificial intelligence. IEEE Access, 13, 23816-23832. https://doi.org/10.1109/access.2025.3537168

Shafqat, S., Kishwer, S., Rasool, R. U., Qadir, J., Amjad, T., & Ahmad, H. F. (2018). Big data analytics enhanced healthcare systems: A review. The Journal of Supercomputing, 76(3), 1754-1799. https://doi.org/10.1007/s11227-017-2222-4

Naqvi, S. A., Sajjad, M., Waseem, L. A., Khalid, S., Shaikh, S., & Kazmi, S. J. (2021). Integrating spatial modelling and space–time pattern mining analytics for vector disease-related health perspectives: A case of dengue fever in Pakistan. International Journal of Environmental Research and Public Health, 18(22), 12018. https://doi.org/10.3390/ijerph182212018

Kazi, A. M., Qazi, S. A., Khawaja, S., Ahsan, N., Ahmed, R. M., Sameen, F., Khan Mughal, M. A., Saqib, M., Ali, S., Kaleemuddin, H., Rauf, Y., Raza, M., Jamal, S., Abbasi, M., & Stergioulas, L. K. (2020). An artificial intelligence–based, personalized smartphone app to improve childhood immunization coverage and timelines among children in Pakistan: Protocol for a randomized controlled trial. JMIR Research Protocols, 9(12), e22996. https://doi.org/10.2196/22996

Nawaz, A., Su, X., Barkat, M. Q., Asghar, S., Asad, A., Basit, F., Iqbal, S., Zahoor, H., & Raheel Shah, S. A. (2020). Epidemic spread and its management through governance and leadership response influencing the arising challenges around COVID-19 in Pakistan—A lesson learnt for low income countries with limited resource. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.573431

Alafif, T. (2020). Machine and deep learning towards COVID-19 diagnosis and treatment: Survey, challenges, and future directions. https://doi.org/10.31224/osf.io/w3zxy

Dangi, R. R., Sharma, A., & Vageriya, V. (2024). Transforming healthcare in low‐resource settings with artificial intelligence: Recent developments and outcomes. Public Health Nursing. https://doi.org/10.1111/phn.13500

Ammar, M., Moaaz, M., Yue, C., Fang, Y., Zhang, Y., Shen, S., & Deng, F. (2025). Emerging Arboviral diseases in Pakistan: Epidemiology and public health implications. Viruses, 17(2), 232. https://doi.org/10.3390/v17020232

Ariffin, N. H., Yusoff, F. H., Mansor, N. N., Javed, S., & Nazir, S. N. (2024). Assessment of sustainable healthcare management policies and practices in Oman: A comprehensive analysis using an AI-based literature review. Multidisciplinary Reviews, 7(11), 2024257. https://doi.org/10.31893/multirev.2024257

Akhtar, N., Khan, N., Qayyum, S., Qureshi, M. I., & Hishan, S. S. (2022). Efficacy and pitfalls of digital technologies in healthcare services: A systematic review of two decades. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.869793

Santosh, K., & Gaur, L. (2021). Artificial intelligence and machine learning in public healthcare. SpringerBriefs in Applied Sciences and Technology. https://doi.org/10.1007/978-981-16-6768-8

Ugwu, O. P., Alum, E. U., Ugwu, J. N., Eze, V. H., Ugwu, C. N., Ogenyi, F. C., & Okon, M. B. (2024). Harnessing technology for infectious disease response in conflict zones: Challenges, innovations, and policy implications. Medicine, 103(28), e38834. https://doi.org/10.1097/md.0000000000038834

Paramesha, M., Rane, N., & Rane, J. (2024). Enhancing resilience through generative artificial intelligence such as ChatGPT. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4832533

Okeibunor, J. C., Jaca, A., Iwu-Jaja, C. J., Idemili-Aronu, N., Ba, H., Zantsi, Z. P., Ndlambe, A. M., Mavundza, E., Muneene, D., Wiysonge, C. S., & Makubalo, L. (2023). The use of artificial intelligence for delivery of essential health services across WHO regions: A scoping review. Frontiers in Public Health, 11. https://doi.org/10.3389/fpubh.2023.1102185

Mumtaz, H., Riaz, M. H., Wajid, H., Saqib, M., Zeeshan, M. H., Khan, S. E., Chauhan, Y. R., Sohail, H., & Vohra, L. I. (2023). Current challenges and potential solutions to the use of digital health technologies in evidence generation: A narrative review. Frontiers in Digital Health, 5. https://doi.org/10.3389/fdgth.2023.1203945

Hirani, R., Noruzi, K., Khuram, H., Hussaini, A. S., Aifuwa, E. I., Ely, K. E., Lewis, J. M., Gabr, A. E., Smiley, A., Tiwari, R. K., & Etienne, M. (2024). Artificial intelligence and healthcare: A journey through history, present innovations, and future possibilities. Life, 14(5), 557. https://doi.org/10.3390/life14050557

Ramos Chaparro, P. A., Hernández Rincón, E. H., Osorio Betancourt, G. A., Melo Sierra, N., Moreno Gómez, M. D., & Jaimes Peñuela, C. L. (2024). Artificial intelligence for the prediction of health emergencies and disasters. Disaster and Emergency Medicine Journal, 9(4), 250-258. https://doi.org/10.5603/demj.101110

Badshah, S. H. (2024). AI-Driven Decision-Making in Healthcare Administration: Exploring Predictive Models for Resource Allocation. Journal of AI and Health, 1(1), 21-27. https://journalaihealth.uk/index.php/jaih/article/view/7

Sahana, K. S., Karthik, C. B., Sree, M. M., Chaithra, M., Abhinandithe, S. K., Snehalatha, B., Sridhar, R., Balasubramanian, S., & Madhu, B. (2023). Geospatial artificial intelligence (GeoAI): Applications in health care. International Journal of Health and Allied Sciences, 11(4). https://doi.org/10.55691/2278-344x.1044

Tsai, S., Wu, T., Wu, C., & Yue, X. (2022). Editorial for the special issue on “Transforming public health through artificial intelligence, machine learning and Internet of things”. Socio-Economic Planning Sciences, 80, 101267. https://doi.org/10.1016/j.seps.2022.101267

Ogundeko-Olugbami, O., Ogundeko, O., Lawan, M., & Foster, E. (2025). Harnessing data for impact: Transforming public health interventions through evidence-based decision-making. World Journal of Advanced Research and Reviews, 25(1), 2085-2103. https://doi.org/10.30574/wjarr.2025.25.1.0297

Cuadros, D. F., Chen, X., Li, J., Omori, R., & Musuka, G. (2024). Advancing public health surveillance: Integrating modeling and GIS in the wastewater-based epidemiology of viruses, a narrative review. Pathogens, 13(8), 685. https://doi.org/10.3390/pathogens13080685

Malik, I., & Khattak, W. A. (2023). Enhancing urban health: machine learning applications in environmental managemen. In Journal of Sustainable Infrastructure for Cities and Societies (Vol. 8, No. 1, pp. 1-21).

Qureshi, M., Ishaq, K., Daniyal, M., Iftikhar, H., Rehman, M. Z., & Salar, S. A. (2025). Forecasting cardiovascular disease mortality using artificial neural networks in Sindh, Pakistan. BMC Public Health, 25(1). https://doi.org/10.1186/s12889-024-21187-0

Albahri, A., Duhaim, A. M., Fadhel, M. A., Alnoor, A., Baqer, N. S., Alzubaidi, L., Albahri, O., Alamoodi, A., Bai, J., Salhi, A., Santamaría, J., Ouyang, C., Gupta, A., Gu, Y., & Deveci, M. (2023). A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion. Information Fusion, 96, 156-191. https://doi.org/10.1016/j.inffus.2023.03.008

Abbas, J., Wang, D., Su, Z., & Ziapour, A. (2021). The role of social media in the advent of COVID-19 pandemic: Crisis management, mental health challenges and implications. Risk Management and Healthcare Policy, 14, 1917-1932. https://doi.org/10.2147/rmhp.s284313

Shaheen, R., & Salim, H. (2024). AI and health. Advances in Healthcare Information Systems and Administration, 233-252. https://doi.org/10.4018/979-8-3693-7051-3.ch010

Bouarar, A. C., Mouloudj, K., & Martínez Asanza, D. (Eds.). (2023). Integrating digital health strategies for effective administration. IGI Global.

Manyazewal, T., Davey, G., Hanlon, C., Newport, M. J., Hopkins, M., Wilburn, J., Bakhiet, S., Mutesa, L., Semahegn, A., Assefa, E., & Fekadu, A. (2024). Innovative technologies to address neglected tropical diseases in African settings with persistent sociopolitical instability. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-54496-4

Baloch, L., Bazai, S. U., Marjan, S., Aftab, F., Aslam, S., Neo, T., & Amphawan, A. (2023). A review of big data trends and challenges in healthcare. International Journal of Technology, 14(6), 1320. https://doi.org/10.14716/ijtech.v14i6.6643

Downloads

Published

2025-02-28

How to Cite

Mitochondrial Dysfunction in Neurodegenerative Diseases: Exploring Therapeutic Approaches for Parkinson’s Disease. (2025). Indus Journal of Bioscience Research, 3(2), 438-451. https://doi.org/10.70749/ijbr.v3i2.716