Phytochemical Profiling and Bioactive Potential of Momordica Balsamina Seed Extracts for Antidiabetic Activity and Antioxidant Potential

Authors

  • Razia Khatoon Department of Chemistry, University of Lahore (UOL), Lahore, Punjab, Pakistan.
  • Mujtaba Ghani Department of Biochemistry and Biotechnology, The University of Faisalabad (TUF), Faisalabad, Punjab, Pakistan.
  • Saira Shahzad Department of Biochemistry and Biotechnology, The University of Faisalabad (TUF), Faisalabad, Punjab, Pakistan.
  • Maleeka Siddiqa Department of Chemistry, Government College Women University, Faisalabad, Punjab, Pakistan.
  • Muhammad Azmat Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Punjab, Pakistan.
  • Imran Zafar Department of Biochemistry and Biotechnology, The University of Faisalabad (TUF), Faisalabad, Punjab, Pakistan.
  • Shaista Shafiq Department of Biochemistry and Biotechnology, The University of Faisalabad (TUF), Faisalabad, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i2.733

Keywords:

Momordica Balsamina, Phytochemical Profiling, GC-MS Analysis, Antidiabetic Activity, Antioxidant Potential

Abstract

This study evaluates the bioactive potential of Momordica balsamina through phytochemical screening, GC-MS profiling, antidiabetic activity assessment, and antioxidant analysis. Phytochemical screening revealed a diverse profile of secondary metabolites, with alkaloids (+++), flavonoids (+++), and glycosides (+++) being the most abundant, particularly in ethyl acetate and methanolic extracts. GC-MS analysis further identified key bioactive compounds, with vicine (80%, RT 4 min, peak area 202.25%), a potent antioxidant and antidiabetic glycoside, emerging as the most abundant. This was followed by charantin (167.56%, RT 5.5 min), a well-known hypoglycemic agent, and triterpenoids (17.34%, RT 6.9 min), recognized for their anti-inflammatory and anticancer properties.The antidiabetic potential of Momordica balsamina was assessed through α-amylase inhibition, where the distilled water leaf extract exhibited the highest inhibition rate (82.63 ± 1.55%), closely approaching that of gallic acid (91.96 ± 1.45%). Comparatively, the ethanolic seed extract showed a notable inhibition rate (69.96 ± 1.55%), further demonstrating the plant’s efficacy in diabetes management. Additionally, the antioxidant capacity was evaluated using the FRAP assay, which indicated strong ferric ion-reducing activity. Among the extracts, the methanolic extract demonstrated the highest reducing ability, reinforcing its potential to combat oxidative stress. The study highlights Momordica balsamina's therapeutic potential, especially in diabetes management and oxidative stress reduction. Ethyl acetate and distilled water extracts exhibited high phytochemical content, with key bioactive compounds like vicine, charantin, and triterpenoids reinforcing its pharmacological importance. The strong efficacy of the distilled water extract suggests that simple extraction methods can yield potent bioactive compounds for herbal formulations. These findings validate its traditional medicinal use and support further in vivo studies and clinical evaluations to explore its full therapeutic potential.

Downloads

Download data is not yet available.

References

El-Moneim, D. A., Alqahtani, M. M., Abdein, M. A., & Germoush, M. O. (2020). Drought and salinity stress response in wheat: Physiological and TaNAC gene expression analysis in contrasting Egyptian wheat genotypes. Journal of Plant Biotechnology, 47(1), 1-14. https://doi.org/10.5010/jpb.2020.47.1.001

Abdein, M. A., & Osman, A. K. E. (2020). Plant diversity assessment of Wadi Al-Hilali, northern border region, Saudi Arabia. Int. J. Bot. Stud, 5(2), 87-95.

Abdein, M., Wrda, H. N., & Osman, A. (2020). Genetic characterization of Genus Tephrosia Pers. based on Molecular markers in KSA. International Journal of Botany Studies, 5(2), 203-209.

Abdein, M. (2018). Genetic diversity between pumpkin accessions growing in the northern border region in Saudi Arabia based on biochemical and molecular parameters. Egyptian Journal of Botany, 58(3), 463-476. https://doi.org/10.21608/ejbo.2018.3612.1171

Abdel-Mageed, A. M., Osman, A. K. E., Awad, N. S., & Abdein, M. A. (2019). Evaluation of Antidiabetic Potentiality of Truffles and Balanites Aegyptiaca among Streptozotocin Induced Diabetic Rats. International Journal of Pharmaceutical Research & Allied Sciences, 8(1). https://openurl.ebsco.com/EPDB%3Agcd%3A7%3A1969175/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A135883119&crl=c&link_origin=scholar.google.com

Abualreish, M. J., & Abdein, M. A. (2014). The analytical applications and biological activity of Hydroxamic acids. JOURNAL OF ADVANCES IN CHEMISTRY, 10(1), 2118-2125. https://doi.org/10.24297/jac.v10i1.5587

Agidew, M. G. (2022). Phytochemical analysis of some selected traditional medicinal plants in Ethiopia. Bulletin of the National Research Centre, 46(1). https://doi.org/10.1186/s42269-022-00770-8

Al-Omar, M., Mohammed, H., Mohammed, S., Abd-Elmoniem, E., Kandil, Y., Eldeeb, H., Chigurupati, S., Sulaiman, G., Al-Khurayyif, H., Almansour, B., Suryavamshi, P., & Khan, R. (2020). Anti-microbial, anti-oxidant, and α-amylase inhibitory activity of traditionally-used medicinal herbs: A comparative analyses of pharmacology, and Phytoconstituents of regional halophytic plants’ diaspora. Molecules, 25(22), 5457. https://doi.org/10.3390/molecules25225457

Al-Qahtani, H., Alfarhan, A. H., & Al-Othman, Z. M. (2020). Changes in chemical composition of Zilla Spinosa Forssk. medicinal plants grown in Saudi Arabia in response to spatial and seasonal variations. Saudi Journal of Biological Sciences, 27(10), 2756-2769. https://doi.org/10.1016/j.sjbs.2020.06.035

Alhaithloul, H. A. (2023). Phytochemical screening of some medicinal plants in al Jouf, KSA. Open Journal of Ecology, 13(02), 61-79. https://doi.org/10.4236/oje.2023.132006

Ali, S. S., Kasoju, N., Luthra, A., Singh, A., Sharanabasava, H., Sahu, A., & Bora, U. (2008). Indian medicinal herbs as sources of antioxidants. Food Research International, 41(1), 1-15. https://doi.org/10.1016/j.foodres.2007.10.001

Allah, K., Rehab, M., & Yousef, M. (2019). Utilization of Black Berry Juice to Reduce the Oxidative Stress in Rats Treated with Acrylamide. Asian Journal of Biological Sciences, 12, 9-16.

Almoshari, Y. (2022). Medicinal plants used for dermatological disorders among the people of the Kingdom of Saudi Arabia: A narrative review. Saudi Journal of Biological Sciences, 29(6), 103303. https://doi.org/10.1016/j.sjbs.2022.103303

Alqethami, A., Hawkins, J. A., & Teixidor-Toneu, I. (2017). Medicinal plants used by women in Mecca: urban, Muslim and gendered knowledge. Journal of Ethnobiology and Ethnomedicine, 13(1). https://doi.org/10.1186/s13002-017-0197-0

Attia-Ismail, S. A. (2018). Plant secondary metabolites of halophytes and salt tolerant plants. In (Vol. 1, pp. 127-142): CRC Press Boca Raton, FL, USA.

Beale, J. M., Block, J., & Hill, R. (2020). Organic medicinal and pharmaceutical chemistry. Philadelphia: Lippincott Williams & Wilkins.

Benavente-García, O., Castillo, J., Marin, F. R., Ortuño, A., & Del Río, J. A. (1997). Uses and properties ofCitrusFlavonoids. Journal of Agricultural and Food Chemistry, 45(12), 4505-4515. https://doi.org/10.1021/jf970373s

Brown, J. E., & Rice-Evans, C. A. (1998). Luteolin-rich artichoke extract protects low density lipoprotein from oxidationIn vitro. Free Radical Research, 29(3), 247-255. https://doi.org/10.1080/10715769800300281

Chai, S. F. (2018). Effect of herbal product on the body weight reduction in high fat diet-induced obese Sprague Dawley Rats/Chai Swee Fern (Doctoral dissertation, University of Malaya).

Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564-582. https://doi.org/10.1128/cmr.12.4.564

Das, S., Saraf, A., Sharma, D., Sarkar, A., & Raja, W. (2020). Study of phytochemical analysis of Withania somnifera and Rauwolfia serpentina plant extract. Int J Herb Med, 8(4), 01-04.

Egbuna, C., Kumar, S., Ifemeje, J. C., Ezzat, S. M., & Kaliyaperumal, S. (Eds.). (2019). Phytochemicals as lead compounds for new drug discovery. Elsevier.

El-Refai, A., Sanad, M., Ramadan, A., & Hikal, D. (2010). Antimicrobial activity of natural anthocyanins and carotenoids extracted from some plants and wastes. Journal of Food and Dairy Sciences, 1(7), 413-427. https://doi.org/10.21608/jfds.2010.82469

Epand, R. F., Savage, P. B., & Epand, R. M. (2007). Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochimica et Biophysica Acta (BBA) - Biomembranes, 1768(10), 2500-2509. https://doi.org/10.1016/j.bbamem.2007.05.023

GURIB-FAKIM, A. Tradition sofy esterday and drugs of tomorrow. In: Molecular.

Haile, A. A., Tsegay, B. A., Seid, A., Adnew, W., & Moges, A. (2022). A review on medicinal plants used in the management of respiratory problems in Ethiopia over a twenty-year period (2000–2021). Evidence-Based Complementary and Alternative Medicine, 2022, 1-14. https://doi.org/10.1155/2022/2935015

Han, X., Shen, T., & Lou, H. (2007). Dietary polyphenols and their biological significance. International Journal of Molecular Sciences, 8(9), 950-988. https://doi.org/10.3390/i8090950

Hikal, D. M. (2015). The importance of eggplant peels anthocyanins on edible oils as natural antioxidants. Australian Journal of Basic and Applied Sciences, 9(33), 491-496.

Hikal, D. M. (2018). Antibacterial activity of piperine and Black pepper oil. Biosciences Biotechnology Research Asia, 15(4), 877-880. https://doi.org/10.13005/bbra/2697

Jamshidi-Kia, F., Lorigooini, Z., & Amini-Khoei, H. (2018). Medicinal plants: Past history and future perspective. Journal of Herbmed Pharmacology, 7(1), 1-7. https://doi.org/10.15171/jhp.2018.01

Jithesh, M. N., Prashanth, S. R., Sivaprakash, K. R., & Parida, A. K. (2006). Antioxidative response mechanisms in halophytes: Their role in stress defence. Journal of Genetics, 85(3), 237-254. https://doi.org/10.1007/bf02935340

Karunamoorthi, K., Jegajeevanram, K., Vijayalakshmi, J., & Mengistie, E. (2012). Traditional medicinal plants. Journal of Evidence-Based Complementary & Alternative Medicine, 18(1), 67-74. https://doi.org/10.1177/2156587212460241

Khan, S. U., Ullah, F., Hussain, M., Zahid Ihsan, M., Mehmood, S., Ali, L., Saud, S., Fahad, S., Hassan, S., Zeeshan, M., Akbar Jadoon, S., Syed, A., Elgorban, A. M., Eswaramoorthy, R., & Iftikhar Hussain, M. (2023). Phytochemical analysis and phytotoxic evaluation of chenopodium glaucum L. Journal of King Saud University - Science, 35(3), 102571. https://doi.org/10.1016/j.jksus.2023.102571

Krings, U., & Berger, R. (2001). Antioxidant activity of some roasted foods. Food Chemistry, 72(2), 223-229. https://doi.org/10.1016/s0308-8146(00)00226-0

Megur, A., Baltriukienė, D., Bukelskienė, V., & Burokas, A. (2020). The microbiota–gut–Brain Axis and Alzheimer’s disease: Neuroinflammation is to blame? Nutrients, 13(1), 37. https://doi.org/10.3390/nu13010037

Mendoza, N., & Silva, E. M. (2018). Introduction to phytochemicals: Secondary metabolites from plants with active principles for pharmacological importance. Phytochemicals - Source of Antioxidants and Role in Disease Prevention. https://doi.org/10.5772/intechopen.78226

Mtewa, A. G., Egbuna, C., & Rao, G. N. (Eds.). (2020). Poisonous plants and phytochemicals in drug discovery. John Wiley & Sons.

Njeru, S. N., Matasyoh, J., Mwaniki, C. G., Mwendia, C. M., & Kobia, K. (2013). A review of some phytochemicals commonly found in medicinal plants. Int J Med Plant, 105, 135-140.

Nobori, T., Miura, K., Wu, D. J., Lois, A., Takabayashi, K., & Carson, D. A. (1994). Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature, 368(6473), 753-756. https://doi.org/10.1038/368753a0

Nyarko, A. A., & Addy, M. E. (1990). Effect of aqueous extract of Adenia cissampeloides on blood pressure and serum analytes of hypertensive patients. Phytotherapy Research, 4(1), 25-28. https://doi.org/10.1002/ptr.2650040107

Ofuegbe, S., Akinrinde, A., Oyagbemi, A., Omobowale, T., Yakubu, M., & Adedapo, A. (2017). Phytochemical, acute toxicity, analgesic, in vitro antioxidant studies and GC-MS investigation of essential oil of the methanol leaf extract of Momordica charantia. Journal of Complementary and Alternative Medical Research, 4(2), 1-18. https://doi.org/10.9734/jocamr/2017/37049

Okwu, D. E. (2001). Evaluation of chemical composition of medicinal plants belonging to Euphorbiaceae. Pak Vet J, 14, 160-162.

Okwu, D. E. (2004). Phytochemicals and vitamin content of indigenous spices of South Eastern Nigeria. https://www.cabidigitallibrary.org/doi/full/10.5555/20053021746

Okwu, D. E., & Okwu, M. E. (2004). Chemical composition of Spondias mombin Linn plant parts. https://www.cabidigitallibrary.org/doi/full/10.5555/20053154198

Osman, A. K., & Abdein, M. A. (2019). Floristic diversity of wadi Ar'ar, Saudi Arabia. Journal of Taibah University for Science, 13(1), 772-789. https://doi.org/10.1080/16583655.2019.1634177

Osman, A. K., & Abdein, M. A. (2019). Karyological and molecular studies between six species of Plantago in the northern border region at Saudi Arabia. Journal of Taibah University for Science, 13(1), 297-308. https://doi.org/10.1080/16583655.2019.1571400

Pandey, A., & Tripathi, S. (2022). Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. Journal of Pharmacognosy and phytochemistry, 2(5), 115-119.

Parimelazhagan, T. (2022). Pharmacological assays of plant-based natural products (Vol. 71). Springer.

Ramalhete, C., Gonçalves, B. M., Barbosa, F., Duarte, N., & Ferreira, M. U. (2022). Momordica balsamina: Phytochemistry and pharmacological potential of a gifted species. Phytochemistry Reviews, 21(2), 617-646. https://doi.org/10.1007/s11101-022-09802-7

Rayan, A. M., Abdein, M. A., & Ibrahim, A. A. (2020). Associated weeds of some agroecosystems in the Northern Border region, KSA. International Journal of Botany Studies, 5(3), 345-351.

Shaikh, J. R., & Patil, M. (2020). Qualitative tests for preliminary phytochemical screening: An overview. International Journal of Chemical Studies, 8(2), 603-608. https://doi.org/10.22271/chemi.2020.v8.i2i.8834

Starý, F. (1994). The natural guide to medicinal herbs and plants. Barnes & Noble.

Stevanović, Z. D., Stanković, M. S., Stanković, J., Janaćković, P., & Stanković, M. (2019). Use of halophytes as medicinal plants: Phytochemical diversity and biological activity. Halophytes and climate change: adaptive mechanisms and potential uses, 343-358. https://doi.org/10.1079/9781786394330.0343

Yadav, M., Chatterji, S., Gupta, S. K., & Watal, G. (2014). Preliminary phytochemical screening of six medicinal plants used in traditional medicine. Int J Pharm Pharm Sci, 6(5), 539-42.

Yadav, R. N. S., & Agarwala, M. (2011). Phytochemical analysis of some medicinal plants. Journal of phytology, 3(12). https://leg.ufpi.br/subsiteFiles/ppgcf/arquivos/files/Phytochemical%20analysis%20of%20some%20medicinal%20plants.pdf

YOUSSEF, S. M., SAYED, S. N., Mahmoud, A., ABDEIN, M. A., & Shamseldin, S. A. (2020). Response of stressed China aster (Callistephus chinensis) CV. Kamini plants to foliar application of benzyladenine (BA) and cycocel (CCC). Seybold Rep, 15, 30-42.

Downloads

Published

2025-02-28

How to Cite

Phytochemical Profiling and Bioactive Potential of Momordica Balsamina Seed Extracts for Antidiabetic Activity and Antioxidant Potential. (2025). Indus Journal of Bioscience Research, 3(2), 564-576. https://doi.org/10.70749/ijbr.v3i2.733