Prebiotic and Probiotics Supplementation used in Animal Nutrition Have Their Effects on Gut Health and Animal Performance

Authors

  • Muhammad Usman Department of Poultry Science, University of Agriculture Faisalabad, Constituent College, Toba Tek Singh, Punjab, Pakistan.
  • Maaz Noor Department of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Hyderabad, Sindh, Pakistan.
  • Umair Ahmed Department of Veterinary Surgery, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan.
  • Ayesha Khan Department of Animal Sciences, Southwest University of Science and Technology, Sichuan Province, Mianyang, China.
  • Sohail Ahmad Department of Animal Nutrition and Production, International Islamic University, Kabul, Afghanistan.
  • Areej Khan Department of Applied Microbiology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan.
  • Abdul Rehman Institute of Microbiology, Government College University, Faisalabad, Punjab, Pakistan.
  • Syeda Umm e Farwa Kazmi Department of Zoology, Wildlife and Fisheries, Muhammad Nawaz Sharif University of Agriculture, Multan, Punjab, Pakistan.
  • Uzair Arshad Institute of Microbiology, University of Veterinary and Animals Sciences, Lahore, Punjab, Pakistan.
  • Obaid Muhammad Abdullah Department Veterinary Surgery, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i2.748

Keywords:

Prebiotics, Probiotics, Animal Performance, Gut Health, Livestock Nutrition, Feed Efficiency, and Microbiota Diversity

Abstract

The increasing demand for efficient and sustainable animal production has led to investigating alternative nutritional strategies, including prebiotics and probiotics.  This study examined the synergistic effects of prebiotic and probiotic supplementation on gastrointestinal health and performance in livestock species, encompassing chicken, swine, and cattle.  A randomized controlled trial was executed over a 12-week duration with 150 chickens, 100 pigs, and 60 cattle at UVAS, Lahore, who were allocated into three groups: control (typical food), probiotic supplementation, and a combination of prebiotic and probiotic supplementation.  Data on growth rate, feed conversion ratio (FCR), gut microbiota composition, cytokine levels (TNF-alpha, IL-6), intestinal permeability, and illness prevalence were gathered.  Statistical analysis, encompassing ANOVA, t-tests, and regression models, was employed to evaluate the impact of supplementation.  The findings indicated that the Probiotic and Combination groups showed substantial enhancements in growth rate and Feed Conversion Ratio (FCR) relative to the Control group.  The Combination group exhibited the most significant enhancement in gut microbial diversity and the most substantial decrease in intestinal permeability. Furthermore, both experimental cohorts exhibited diminished levels of inflammatory cytokines and a decreased prevalence of gastrointestinal disorders, with the Combination group demonstrating the most favorable outcomes.  The data indicates that concurrently administering prebiotics and probiotics can enhance livestock growth efficiency, gastrointestinal health, and disease resistance.  This study highlights the benefits of prebiotic and probiotic supplementation in livestock, improving gut health, growth rate, feed conversion, and immunity. The combination group showed the most significant improvements, supporting a synergistic effect. Future research should address long-term impacts, dose responses, and economic viability to enhance sustainable livestock production.

Downloads

Download data is not yet available.

References

Cenit, M. C., Sanz, Y., & Codoñer-Franch, P. (2017). Influence of gut microbiota on neuropsychiatric disorders. World Journal of Gastroenterology, 23(30), 5486. https://doi.org/10.3748/wjg.v23.i30.5486

Deng, P., Valentino, T., Flythe, M. D., Moseley, H. N., Leachman, J. R., Morris, A. J., & Hennig, B. (2021). Untargeted stable isotope probing of the gut microbiota metabolome using 13C-labeled dietary fibers. Journal of Proteome Research, 20(5), 2904-2913. https://doi.org/10.1021/acs.jproteome.1c00124

Duranti, S., Mancabelli, L., Mancino, W., Anzalone, R., Longhi, G., Statello, R., Carnevali, L., Sgoifo, A., Bernasconi, S., Turroni, F., & Ventura, M. (2019). Exploring the effects of COLOSTRONONI on the mammalian gut microbiota composition. PLOS ONE, 14(5), e0217609. https://doi.org/10.1371/journal.pone.0217609

Frame, L. A., Costa, E., & Jackson, S. A. (2020). Current explorations of nutrition and the gut microbiome: A comprehensive evaluation of the review literature. Nutrition Reviews, 78(10), 798-812. https://doi.org/10.1093/nutrit/nuz106

Hiel, S., Bindels, L. B., Pachikian, B. D., Kalala, G., Broers, V., Zamariola, G., Chang, B. P., Kambashi, B., Rodriguez, J., Cani, P. D., Neyrinck, A. M., Thissen, J., Luminet, O., Bindelle, J., & Delzenne, N. M. (2019). Effects of a diet based on inulin-rich vegetables on gut health and nutritional behavior in healthy humans. The American Journal of Clinical Nutrition, 109(6), 1683-1695. https://doi.org/10.1093/ajcn/nqz001

Khan, S., Moore, R. J., Stanley, D., & Chousalkar, K. K. (2020). The gut microbiota of laying hens and its manipulation with prebiotics and probiotics to enhance gut health and food safety. Applied and Environmental Microbiology, 86(13). https://doi.org/10.1128/aem.00600-20

Kleniewska, P., Hoffmann, A., Pniewska, E., & Pawliczak, R. (2016). The influence of probiotic Lactobacillus casei in combination with prebiotic inulin on the antioxidant capacity of human plasma. Oxidative Medicine and Cellular Longevity, 2016(1). https://doi.org/10.1155/2016/1340903

La Rosa, S. L., Kachrimanidou, V., Buffetto, F., Pope, P. B., Pudlo, N. A., Martens, E. C., Rastall, R. A., Gibson, G. R., & Westereng, B. (2019). Wood-derived dietary fibers promote beneficial human gut microbiota. mSphere, 4(1). https://doi.org/10.1128/msphere.00554-18

Malmuthuge, N., Liang, G., Griebel, P. J., & Guan, L. L. (2019). Taxonomic and functional compositions of the small intestinal microbiome in neonatal calves provide a framework for understanding early life gut health. Applied and Environmental Microbiology, 85(6). https://doi.org/10.1128/aem.02534-18

McCormack, U. M., Curião, T., Metzler-Zebeli, B. U., Wilkinson, T., Reyer, H., Crispie, F., Cotter, P. D., Creevey, C. J., Gardiner, G. E., & Lawlor, P. G. (2019). Improvement of feed efficiency in pigs through microbial modulation via fecal microbiota transplantation in sows and dietary supplementation of inulin in offspring. Applied and Environmental Microbiology, 85(22). https://doi.org/10.1128/aem.01255-19

McLoughlin, R., Berthon, B. S., Rogers, G. B., Baines, K. J., Leong, L. E., Gibson, P. G., Williams, E. J., & Wood, L. G. (2019). Soluble fibre supplementation with and without a probiotic in adults with asthma: A 7-day randomised, double blind, three way cross-over trial. eBioMedicine, 46, 473-485. https://doi.org/10.1016/j.ebiom.2019.07.048

Misiakiewicz-Has, K., Maciejewska-Markiewicz, D., Rzeszotek, S., Pilutin, A., Kolasa, A., Szumilas, P., Stachowska, E., & Wiszniewska, B. (2021). The obscure effect of Tribulus terrestris saponins plus inulin on liver morphology, liver fatty acids, plasma glucose, and lipid profile in SD rats with and without induced type 2 diabetes mellitus. International Journal of Molecular Sciences, 22(16), 8680. https://doi.org/10.3390/ijms22168680

Morshedi, M., Saghafi-Asl, M., & Hosseinifard, E. (2020). The potential therapeutic effects of the gut microbiome manipulation by synbiotic containing-lactobacillus plantarum on neuropsychological performance of diabetic rats. Journal of Translational Medicine, 18(1). https://doi.org/10.1186/s12967-019-02169-y

Myhill, L. J., Stolzenbach, S., Mejer, H., Jakobsen, S. R., Hansen, T. V., Andersen, D., Brix, S., Hansen, L. H., Krych, L., Nielsen, D. S., Nejsum, P., Thamsborg, S. M., & Williams, A. R. (2020). Fermentable dietary fiber promotes helminth infection and exacerbates host inflammatory responses. The Journal of Immunology, 204(11), 3042-3055. https://doi.org/10.4049/jimmunol.1901149

Polyviou, T., MacDougall, K., Chambers, E. S., Viardot, A., Psichas, A., Jawaid, S., Harris, H. C., Edwards, C. A., Simpson, L., Murphy, K. G., Zac‐Varghese, S. E., Blundell, J. E., Dhillo, W. S., Bloom, S. R., Frost, G. S., Preston, T., Tedford, M. C., & Morrison, D. J. (2016). Randomised clinical study: Inulin short‐chain fatty acid esters for targeted delivery of short‐chain fatty acids to the human colon. Alimentary Pharmacology & Therapeutics, 44(7), 662-672. https://doi.org/10.1111/apt.13749

Raymann, K., Shaffer, Z., & Moran, N. A. (2017). Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLOS Biology, 15(3), e2001861. https://doi.org/10.1371/journal.pbio.2001861

Reimer, R. A., Willis, H. J., Tunnicliffe, J. M., Park, H., Madsen, K. L., & Soto‐Vaca, A. (2017). Inulin‐type fructans and whey protein both modulate appetite but only fructans alter gut microbiota in adults with overweight/obesity: A randomized controlled trial. Molecular Nutrition & Food Research, 61(11). https://doi.org/10.1002/mnfr.201700484

Rivière, A., Selak, M., Lantin, D., Leroy, F., & De Vuyst, L. (2016). Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00979

Rodriguez, J., Hiel, S., Neyrinck, A. M., Le Roy, T., Pötgens, S. A., Leyrolle, Q., Pachikian, B. D., Gianfrancesco, M. A., Cani, P. D., Paquot, N., Cnop, M., Lanthier, N., Thissen, J., Bindels, L. B., & Delzenne, N. M. (2020). Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut, 69(11), 1975-1987. https://doi.org/10.1136/gutjnl-2019-319726

Rodriguez, J., Hiel, S., Neyrinck, A. M., Le Roy, T., Pötgens, S. A., Leyrolle, Q., Pachikian, B. D., Gianfrancesco, M. A., Cani, P. D., Paquot, N., Cnop, M., Lanthier, N., Thissen, J., Bindels, L. B., & Delzenne, N. M. (2020). Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut, 69(11), 1975-1987. https://doi.org/10.1136/gutjnl-2019-319726

Vasquez, K. S., Shiver, A. L., & Huang, K. C. (2018). Cutting the Gordian knot of the microbiota. Molecular Cell, 70(5), 765-767. https://doi.org/10.1016/j.molcel.2018.05.034

Vazquez‐Olivo, G., Gutiérrez‐Grijalva, E. P., & Heredia, J. B. (2018). Prebiotic compounds from agro‐industrial by‐products. Journal of Food Biochemistry, 43(6), e12711. https://doi.org/10.1111/jfbc.12711

Wiertsema, S. P., Van Bergenhenegouwen, J., Garssen, J., & Knippels, L. M. (2021). The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients, 13(3), 886. https://doi.org/10.3390/nu13030886

Xiao, F., Zhu, W., Yu, Y., He, Z., Wu, B., Wang, C., Shu, L., Li, X., Yin, H., Wang, J., Juneau, P., Zheng, X., Wu, Y., Li, J., Chen, X., Hou, D., Huang, Z., He, J., Xu, G., … Yan, Q. (2021). Host development overwhelms environmental dispersal in governing the ecological succession of zebrafish gut microbiota. npj Biofilms and Microbiomes, 7(1). https://doi.org/10.1038/s41522-020-00176-2

Xiong, X., Tan, B., Song, M., Ji, P., Kim, K., Yin, Y., & Liu, Y. (2019). Nutritional intervention for the intestinal development and health of weaned pigs. Frontiers in Veterinary Science, 6. https://doi.org/10.3389/fvets.2019.00046

Downloads

Published

2025-02-28

How to Cite

Prebiotic and Probiotics Supplementation used in Animal Nutrition Have Their Effects on Gut Health and Animal Performance. (2025). Indus Journal of Bioscience Research, 3(2), 577-585. https://doi.org/10.70749/ijbr.v3i2.748