Drug Repurposing for Inhibiting Triose Phosphate Isomerase of Giardia lamblia (GlTIM) Using a Computational Approach
DOI:
https://doi.org/10.70749/ijbr.v3i2.830Keywords:
Drug Repurposing, Giardiasis, GlTIMAbstract
Background: Giardiasis is caused by an intestinal flagellated protozoan parasite, Giardia lamblia. This pathogen can infect many hosts, including domestic and wild animals and humans. It is responsible for 280 million symptomatic individuals worldwide, with a prevalence of 2 to 5% in industrialized countries and 20 to 30% in developing countries. Few antiprotozoal drugs are used to cure giardiasis; albeit with the resistance shown by the parasite to many of these drugs. Alternative drugs are continuously needed to be developed. One of the key proteins to target is Giardia lamblia Triose phosphate Isomerase (GlTIM), an enzyme involved in glycolysis as well as gluconeogenesis. Objective: The present study was designed to find inhibitors for GlTIM through an insilico approach, utilizing drugs that are already in use for other diseases. Methods: The GlTIM 3D structure was obtained from the protein database. From ChemSpider, one hundred and forty potential drugs, already approved by the FDA, were retrieved and docked utilizing the PatchDock server, results with the highest interactions were selected. The GS viewer and LIGPLOT+ were used to visualize the interactions, which included hydrogen bonding, covalent and hydrophobic interactions. Results: Interactions with the target active site residues suggest the possible inhibition that these ligands can potentiate. The drugs with the highest interaction in the current study include Daptomycin, Vancomycin and Cefazedone. Conclusions: The inhibition of GlTIM by these drugs demonstrates that drug repurposing is an important pharmaceutical strategy that can yield new therapeutics in less time and fewer resources for this parasitic disease.
Downloads
References
Gutiérrez, A. M. Q. (2017). Giardiasis epidemiology. In IntechOpen. https://doi.org/10.5772/intechopen.70338.
Vicente, B., De Freitas, A., Freitas, M., & Midlej, V. (2024). Systematic review of diagnostic approaches for human giardiasis: Unveiling optimal strategies. Diagnostics (Basel), 14(4), 364. https://doi.org/10.3390/diagnostics14040364
Ma’ayeh, S., & Svärd, S. (2024). Giardia and giardiasis. In Molecular Medical Microbiology (3rd ed., pp. 3107-3119). https://doi.org/10.1016/B978-0-12-818619-0.00018-6
Najafi, M. R., & Esfandiari, N. (2024). Giardiasis. In The Handbook of Zoonotic Diseases of Goats (pp. 383-393). https://doi.org/10.1079/9781800622852.0034.
Argüello-García, R., Leitsch, D., Skinner-Adams, T., & Ortega-Pierres, M. G. (2020). Drug resistance in Giardia: Mechanisms and alternative treatments for giardiasis. Advances in Parasitology, 107, 201-282. https://doi.org/10.1016/bs.apar.2019.11.003.
Zhang, Y., Zhao, W., Du, H., Dhakal, P., Chen, X., Wu, L., Li, X., Wang, R., Zhang, L., Zhang, S., & Li, J. (2024). Licochalcone A: A promising antiparasitic drug against giardiasis. International Journal for Parasitology: Drugs and Drug Resistance, 27, 100573. https://doi.org/10.1016/j.ijpddr.2024.100573.
Heyworth, M. F. (2014). Immunological aspects of Giardia infections. Parasite, 21, 55. https://doi.org/10.1051/parasite/2014056.
Klotz, C., & Aebischer, T. (2015). The immunological enigma of human giardiasis. Current Tropical Medicine Reports, 2, 119-127. https://doi.org/10.1007/s40475-015-0050-2.
Sprong, H., Cacciò, S. M., & van der Giessen, J. W. B. (2009). Identification of zoonotic genotypes of Giardia duodenalis. PLoS Neglected Tropical Diseases, 3(12), e558. https://doi.org/10.1371/journal.pntd.0000558.
Chang, Y., Li, J., & Zhang, L. (2023). Genetic diversity and molecular diagnosis of Giardia. Infection, Genetics and Evolution, 113, 105482. https://doi.org/10.1016/j.meegid.2023.105482.
Dunn, N., & Juergens, A. L. (2025). Giardiasis. In StatPearls [Internet]. StatPearls Publishing. Last update: February 12, 2024.
Aziz, A. F. E., Roshidi, N., Wong, W. K., & Arifin, N. (2024). Giardiasis. In The Diagnosis and Treatment of Protozoan Diseases (pp. 181-202). https://doi.org/10.1016/B978-0-443-19161-9.00006-1.
Scorza, V., & Lappin, M. R. (2021). Giardiasis. In Greene's Infectious Diseases of the Dog and Cat (5th ed., pp. 1263-1277). https://doi.org/10.1016/B978-0-323-50934-3.00101-4 .
Vázquez-Jiménez, L. K., Moreno-Herrera, A., Juárez-Saldivar, A., González-González, A., Ortiz-Pérez, E., Paz-González, A. D., Palos, I., Ramírez-Moreno, E., & Rivera, G. (2022). Recent advances in the development of triose phosphate isomerase inhibitors as antiprotozoal agents. Current Medicinal Chemistry, 29(14), 2504-2529. https://doi.org/10.2174/0929867328666210913090928.
Juárez-Saldivar, A., Barbosa-Cabrera, E., Lara-Ramírez, E. E., Paz-González, A. D., Martínez-Vázquez, A. V., Bocanegra-García, V., Palos, I., Campillo, N. E., & Rivera, G. (2021). Virtual screening of FDA-approved drugs against triose phosphate isomerase from Entamoeba histolytica and Giardia lamblia identifies inhibitors of their trophozoite growth phase. International Journal of Molecular Sciences, 22(11), 5943. https://doi.org/10.3390/ijms22115943.
Mørch, K., & Hanevik, K. (2020). Giardiasis treatment: an update with a focus on refractory disease. Current Opinion in Infectious Diseases, 33(5), 355-364. https://doi.org/10.1097/QCO.0000000000000668.
Moka, M. K., George, M., Rathakrishnan, D., Jagadeeshwaran, V., & D K, S. (2025). Trends in drug repurposing: Advancing cardiovascular disease management in geriatric populations. Current Research in Translational Medicine, 73(2), 103496. https://doi.org/10.1016/j.retram.2025.103496.
Xia, Y., Sun, M., Huang, H., & Jin, W. L. (2024). Drug repurposing for cancer therapy. Signal Transduction and Targeted Therapy, 9(1), 92. https://doi.org/10.1038/s41392-024-01808-1.
Park, K. (2019). A review of computational drug repurposing. Translational Clinical Pharmacology, 27(2), 59-63. https://doi.org/10.12793/tcp.2019.27.2.59.
Gregoire, N., Chauzy, A., Buyck, J., Rammaert, B., Couet, W., & Marchand, S. (2021). Clinical pharmacokinetics of daptomycin. Clinical Pharmacokinetics, 60(3), 271-281. https://doi.org/10.1007/s40262-020-00968-x.
Álvarez, R., López Cortés, L. E., Molina, J., Cisneros, J. M., & Pachón, J. (2016). Optimizing the clinical use of vancomycin. Antimicrobial Agents and Chemotherapy, 60(5), 2601-2609. https://doi.org/10.1128/AAC.03147-14.
Patel, S., Preuss, C. V., & Bernice, F. (2024). Vancomycin. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. PMID: 29083794.
Gao, L., Zhu, Y., Lyu, Y., Hao, F.-L., Zhang, P., & Wei, M.-J. (2015). A pharmacokinetic and pharmacodynamic study on intravenous cefazedone sodium in patients with community-acquired pneumonia. Chinese Medical Journal (English), 128(9), 1160-1164. https://doi.org/10.4103/0366-6999.156086.
Rajendiran, A., Gupta, A. K., & Singh, A. (2023). A Textbook of Medicinal Chemistry III (Paperback ed.). Shashwat Publication.
Dzintars, K. (2017). Carbenicillin, Carindacillin, Carfecillin, and Ticarcillin. In Kucers' The Use of Antibiotics (pp. 173-186). CRC Press.
Rizwana B, F., Prasana, J. C., Muthu, S., & Abraham, C. S. (2019). Molecular docking studies, charge transfer excitation and wave function analyses (ESP, ELF, LOL) on valacyclovir: A potential antiviral drug. Computational Biology and Chemistry, 78, 9-17. https://doi.org/10.1016/j.compbiolchem.2018.11.014.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.