Screening Potential Inhibitors of Plasmodium falciparum Purine Nucleoside Phosphorylase (PfPNP) Using a Computational Approach
DOI:
https://doi.org/10.70749/ijbr.v3i2.832Keywords:
Malaria, Purine Nucleoside Phosphorylase (PNP), Docking, Malaria TreatmentAbstract
Background: Pneumonia is an inflammatory condition of the lungs caused by the bacterium Streptococcus pneumoniae. It is a significant cause of mortality and morbidity, particularly among young children, adults and immunocompromised persons. Resistance against drugs is continuously evolving in nearly all pathogens. The constant need for alternative therapeutic options demands the necessity of an ongoing search for novel drugs. Objective: The current study was thus designed to target the penicillin binding protein of Streptococcus pneumoniae (PBP1a), a protein involved in critical cellular and metabolic processes. Method: PBP1a sequence of Streptococcus pneumoniae was obtained from UniProt database and protein BLAST was performed. 3D structure of PBP1a was downloaded from RCSB and visualized using Discovery Studio Visualizer. 150 drugs were docked using PatchDock web server and protein interactions were explored using GS Viewer, LigPlot+ and Discovery Studio Visualizer. Result: Out of the 150 drugs chosen, Lamivudine, Dolutegravir and Loperamide showed the most interactions with Streptococcus pneumoniae PBP1a. These interactions included covalent bonds, hydrogen bonds and hydrophobic interactions. Conclusion: The drugs Lamivudine, Dolutegravir and Loperamide interacted uniquely with the target protein. These interactions may trigger metabolic changes and could inhibit the growth and kill the parasite. Further experimental study is needed to fully understand the potential of these drugs.
Downloads
References
Talapko, J., Škrlec, I., Alebi?, T., Juki?, M., & V?ev, A. (2019). Malaria: The past and the present. Microorganisms, 7(6), 179. https://doi.org/10.3390/microorganisms7060179.
Nosten, F., Richard-Lenoble, D., & Danis, M. (2022). A brief history of malaria. Presse Médicale, 51(3), 104130. https://doi.org/10.1016/j.lpm.2022.104130.
Milner, D. A. Jr. (2018). Malaria pathogenesis. Cold Spring Harbor Perspectives in Medicine, 8(1), a025569. https://doi.org/10.1101/cshperspect.a025569.
Su, X.-z., Xu, F., Stadler, R. V., Teklemichael, A. A., & Wu, J. (2025). Malaria: Factors affecting disease severity, immune evasion mechanisms, and reversal of immune inhibition to enhance vaccine efficacy. PLoS Pathogens, 21(1), e1012853. https://doi.org/10.1371/journal.ppat.1012853.
Patel, P., Bagada, A., & Vadia, N. (2024). Epidemiology and current trends in malaria. In Rising Contagious Diseases: Basics, Management, and Treatments (pp. 261-282). https://doi.org/10.1002/9781394188741.
Fikadu, M., & Ashenafi, E. (2023). Malaria: An overview. Infectious Diseases and Therapy, 16, 3339-3347. https://doi.org/10.2147/IDR.S405668.
White, N. J. (2022). Severe malaria. Malaria Journal, 21(1), 284. https://doi.org/10.1186/s12936-022-04301-8.
Venkatesan, P. (2024). The 2023 WHO World malaria report. Lancet Microbe, 5(3), e214. https://doi.org/10.1016/S2666-5247(24)00016-8.
Weiss, D.J., et al., Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum and Plasmodium vivax malaria, 2000-22: a spatial and temporal modelling study. The Lancet, 2025. https://doi.org/10.1016/S0140-6736(19)31097-9.
Basu, L., Bhowmik, B., Pal, A., Roy, P., Dey, B., Mondal, R., Roy, C., & Halder, L. (2024). Drugs resistance and new strategies of prevention against malaria: An ongoing battle. Journal of Vector Borne Diseases. https://doi.org/10.4103/JVBD.JVBD_72_24.
Ippolito, M. M., Moser, K. A., Kabuya, J. B. B., Cunningham, C., & Juliano, J. J. (2021). Antimalarial drug resistance and implications for the WHO global technical strategy. Current Epidemiology Reports, 8(2), 46-62. https://doi.org/10.1007/s40471-021-00266-5.
Plowe, C. V. (2022). Malaria chemoprevention and drug resistance: A review of the literature and policy implications. Malaria Journal, 21(1), 104. https://doi.org/10.1186/s12936-022-04115-8.
Elati, H. A. A., Goerner, A. L., Martorelli Di Genova, B., Sheiner, L., & de Koning, H. P. (2023). Pyrimidine salvage in Toxoplasma gondii as a target for new treatment. Frontiers in Cellular and Infection Microbiology, 13, 1320160. https://doi.org/10.3389/fcimb.2023.1320160.
Cassera, M. B., Zhang, Y., Hazleton, K. Z., & Schramm, V. L. (2011). Purine and pyrimidine pathways as targets in Plasmodium falciparum. Current Topics in Medicinal Chemistry, 11(16), 2103-2115. https://doi.org/10.2174/156802611796575948.
Chung, Z., Lin, J., Wirjanata, G., Dziekan, J. M., El Sahili, A., Preiser, P. R., Bozdech, Z., & Lescar, J. (2024). Identification and structural validation of purine nucleoside phosphorylase from Plasmodium falciparum as a target of MMV000848. Journal of Biological Chemistry, 300(1), 105586. https://doi.org/10.1016/j.jbc.2023.105586.
Salcedo-Sora, J. E., Ochong, E., Beveridge, S., Johnson, D., Nzila, A., Biagini, G. A., Stocks, P. A., O'Neill, P. M., Krishna, S., Bray, P. G., & Ward, S. A. (2011). The molecular basis of folate salvage in Plasmodium falciparum: Characterization of two folate transporters. Journal of Biological Chemistry, 286(52), 44659-44668. https://doi.org/10.1074/jbc.M111.286054.
UniProt Consortium. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506-D515. https://doi.org/10.1093/nar/gky1049.
Burley, S.K., et al., RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic acids research, 2019. 47(D1): p. D464-D474. https://doi.org/10.1093/nar/gky1004.
Visualizer, D., Discovery studio visualizer. 2. Accelrys software inc, 2005.
Shaker, B., Ahmad, S., Lee, J., Jung, C., & Na, D. (2021). In silico methods and tools for drug discovery. Computational Biology and Medicine, 137, 104851. https://doi.org/10.1016/j.compbiomed.2021.104851.
Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778-2786. https://doi.org/10.1021/ci200227u.
Chen, Y., Li, Y., Gao, J., Yu, Q., Zhang, Y., & Zhang, J. (2024). Perspectives and challenges in developing small molecules targeting purine nucleoside phosphorylase. European Journal of Medicinal Chemistry, 271, 116437. https://doi.org/10.1016/j.ejmech.2024.116437.
Karunarathna, I., Hapuarachchi, T., Gunasena, P., & Ekanayake, U. (2024). Comprehensive guide to amoxicillin: Indications, dosage, and adverse effects. ResearchGate. https://doi.org/10.13140/RG.2.2.16260.54408.
Kushwaha, A. and P. Gupta, Amoxicillin: mechanism of action, pharmacokinetics, and therapeutic implications in bacterial infections. PEXACY International Journal of Pharmaceutical Science, 2023. 2(6): p. 42-64.
Scarpino, A., Ferenczy, G. G., & Keser?, G. M. (2020). Covalent docking in drug discovery: Scope and limitations. Current Pharmaceutical Design, 26(44), 5684-5699. https://doi.org/10.2174/1381612824999201105164942
Caraceni, P., Vargas, V., Solà, E., Alessandria, C., de Wit, K., Trebicka, J., Angeli, P., Mookerjee, R. P., Durand, F., Pose, E., Krag, A., Bajaj, J. S., Beuers, U., & Ginès, P.; Liverhope Consortium Collaborators. (2021). The use of rifaximin in patients with cirrhosis. Hepatology, 74(3), 1660-1673. https://doi.org/10.1002/hep.31708.
DuPont, H. L. (2016). Review article: The antimicrobial effects of rifaximin on the gut microbiota. Alimentary Pharmacology & Therapeutics, 43(Suppl 1), 3-10. https://doi.org/10.1111/apt.13434.
DuPont, H. L. (2015). Therapeutic effects and mechanisms of action of rifaximin in gastrointestinal diseases. Mayo Clinic Proceedings, 90(8), 1116-1124. https://doi.org/10.1016/j.mayocp.2015.04.016.
Rainsford, K. (2015). Pharmacology and toxicology of ibuprofen. In Ibuprofen: Discovery, development and therapeutics (pp. 132-236). https://doi.org/10.1002/9781118743614.ch5.
Rocha, D. M. G. C., Viveiros, M., Saraiva, M., & Osório, N. S. (2021). The neglected contribution of streptomycin to the tuberculosis drug resistance problem. Genes (Basel), 12(12), 2003. https://doi.org/10.3390/genes12122003.
Peter, S., & Aderibigbe, B. A. (2024). Ciprofloxacin and norfloxacin hybrid compounds: Potential anticancer agents. Current Topics in Medicinal Chemistry, 24(7), 644-665. https://doi.org/10.2174/0115DKRTtc6iEU1EM13HoVx9HDBTcWQiV63.
Sharma, P.C., A. Saneja, and S. Jain, Norfloxacin: A therapeutic review. Int J Chem Sci, 2008. 6(4): p. 1702-1713.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.