Immunohistochemical Evaluation of Oral Tissues in Contact with Dental Implants
DOI:
https://doi.org/10.70749/ijbr.v3i3.2137Keywords:
Dental Implants, Immunohistochemistry, Peri-implant Tissues, Collagen, IL-1β, CD68, PakistanAbstract
Introduction: Dental implants are a popular choice in oral restoration, and their long-term success is based mainly on good osseointegration and healthy peri-implant soft tissues. Immunohistochemical analysis is crucial for understanding cellular and molecular responses in determining implant stability and the progression of disease. Objectives: To assess the immunohistochemical properties of oral tissues in contact with dental implants, focusing on inflammatory markers and connective tissue organisation within patients attending the Foundation University College of Dentistry, Islamabad. Material and Methods: A Prospective observational study of 40 patients with implants placed at least six months prior was conducted at Foundation University College of Dentistry, Islamabad in the duration from November, 2023 to April, 2024. A biopsy of the peri-implant tissue samples was obtained, processed histopathologically, and stained with IHC to detect CD68, IL-1 beta, and collagen type I. Data on correlations between clinical peri-implant health and immunohistochemical results were recorded. Results: Histopathologic examination revealed mild to severe inflammatory infiltration in peri-implant tissues, with significant differences across clinical statuses (p = 0.041, Kruskal-Wallis test). CD68 and IL-1β expression were significantly upregulated in inflamed tissues, particularly in peri-implant mucositis and early peri-implantitis (p < 0.05, Mann-Whitney U test, 95% CI [0.12–0.72]), while collagen type I expression was significantly elevated in clinically healthy sites (p = 0.008, 95% CI [0.35–0.82], Kruskal-Wallis test). Conclusion: The use of immunohistochemical analysis is a valuable method for evaluating the health of peri-implant tissues. Higher collagen levels indicate stable disease, while higher CD68 and IL-1β imply active disease at an early stage.
Downloads
References
1. Mustakim, K. R., Eo, M. Y., Seo, M. H., Yang, H., Kim, M., Myoung, H., & Kim, S. M. (2024). Ultrastructural and immunohistochemical evaluation of hyperplastic soft tissues surrounding dental implants in fibular jaws. Scientific Reports, 14(1).
https://doi.org/10.1038/s41598-024-60474-z
2. Milinkovic, I., Krasavcevic, A. D., Jankovic, S., Sopta, J., & Aleksic, Z. (2022). Immunohistochemical analysis of soft tissue response to polyetheretherketone (PEEK) and titanium healing abutments on dental implants: A randomized pilot clinical study. BMC Oral Health, 22(1).
https://doi.org/10.1186/s12903-022-02536-0
3. Cinquini, C., Marchio, V., Di Donna, E., Alfonsi, F., Derchi, G., Nisi, M., & Barone, A. (2022). Histologic evaluation of soft tissues around dental implant abutments: A narrative review. Materials, 15(11), 3811.
https://doi.org/10.3390/ma15113811
4. Flores, V., Venegas, B., Donoso, W., Ulloa, C., Chaparro, A., Sousa, V., & Beltrán, V. (2022). Histological and Immunohistochemical analysis of Peri-implant soft and hard tissues in patients with Peri-implantitis. International Journal of Environmental Research and Public Health, 19(14), 8388.
https://doi.org/10.3390/ijerph19148388
5. Yuan, X., Pei, X., Chen, J., Zhao, Y., Brunski, J. B., & Helms, J. A. (2021). Comparative analyses of the soft tissue interfaces around teeth and implants: Insights from a pre‐clinical implant model. Journal of Clinical Periodontology, 48(5), 745-753.
https://doi.org/10.1111/jcpe.13446
6. Fretwurst, T., Müller, J., Larsson, L., Bronsert, P., Hazard, D., Castilho, R. M., Kohal, R., Nelson, K., & Iglhaut, G. (2020). Immunohistological composition of Peri‐implantitis affected tissue around ceramic implants—A pilot study. Journal of Periodontology, 92(4), 571-579.
https://doi.org/10.1002/jper.20-0169
7. Li, J., Xue, S., Liu, Z., Yao, D., & Jiang, T. (2022). Distribution of mature and newly regenerated nerve fibres after tooth extraction and dental implant placement: An immunohistological study. Journal of Oral Rehabilitation, 49(8), 796-805.
https://doi.org/10.1111/joor.13338
8. Noh, R., Warda, N., Tremblay, C., & Davies, J. E. (2025). A new preclinical surgical model for the assessment of dental implant tissue integration. Surgeries, 6(2), 36.
https://doi.org/10.3390/surgeries6020036
9. Liegeois, L., Borie, M., Lecloux, G., Van Hede, D., & Lambert, F. (2024). Influence of implant component materials on Peri‐implant soft tissue healing: A comparative histological and Immunohistochemical study in humans. Clinical Oral Implants Research, 36(3), 397-409.
https://doi.org/10.1111/clr.14391
10. Imber, J., Roccuzzo, A., Stähli, A., Saulacic, N., Deschner, J., Sculean, A., & Bosshardt, D. D. (2021). Immunohistochemical evaluation of periodontal regeneration using a porous collagen scaffold. International Journal of Molecular Sciences, 22(20), 10915.
https://doi.org/10.3390/ijms22201091
11. Nakayama, Y., Taguchi, C., Nakayama, M., Suemitsu, M., & Kuyama, K. (2023). Histopathological and Immunohistochemical study of Peri-implant epithelium. Open Journal of Stomatology, 13(09), 309-321.
https://doi.org/10.4236/ojst.2023.139025
12. Solakoglu, Ö., Götz, W., Von Baehr, V., Heydecke, G., Pantel, K., & Schwarzenbach, H. (2022). Characterization of immunologically detectable T-cell sensitization, Immunohistochemical detection of pro-inflammatory cytokines, and clinical parameters of patients after allogeneic intraoral bone grafting procedures: A prospective randomized controlled clinical trial in humans. BMC Oral Health, 22(1).
https://doi.org/10.1186/s12903-022-02584-6
13. Makishi, S., Yamazaki, T., & Ohshima, H. (2022). Osteopontin on the dental implant surface promotes direct osteogenesis in Osseointegration. International Journal of Molecular Sciences, 23(3), 1039.
https://doi.org/10.3390/ijms23031039
14. Furuhashi, A., Ayukawa, Y., Atsuta, I., Rakhmatia, Y. D., & Koyano, K. (2021). Soft tissue interface with various kinds of implant abutment materials. Journal of Clinical Medicine, 10(11), 2386.
https://doi.org/10.3390/jcm10112386
15. Kunrath, M. F., & Dahlin, C. (2022). The impact of early saliva interaction on dental implants and biomaterials for oral regeneration: An overview. International Journal of Molecular Sciences, 23(4), 2024.
https://doi.org/10.3390/ijms23042024
16. Harada, A., Sasaki, H., Asami, Y., Hanazawa, K., Miyazaki, S., Sekine, H., & Yajima, Y. (2024). Effects of the application of low-temperature atmospheric plasma on titanium implants on wound healing in Peri-implant connective tissue in rats. International Journal of Implant Dentistry, 10(1).
https://doi.org/10.1186/s40729-024-00524-3
17. Areid, N., Willberg, J., Kangasniemi, I., & Närhi, T. O. (2021). Organotypic in vitro block culture model to investigate tissue-implant interface. An experimental study on pig mandible. Journal of Materials Science: Materials in Medicine, 32(11).
https://doi.org/10.1007/s10856-021-06608-5
18. Oguić, M., Čandrlić, M., Tomas, M., Vidaković, B., Blašković, M., Jerbić Radetić, A. T., Zoričić Cvek, S., Kuiš, D., & Cvijanović Peloza, O. (2023). Osteogenic potential of autologous dentin Graft compared with bovine xenograft mixed with autologous bone in the Esthetic zone: Radiographic, histologic and Immunohistochemical evaluation. International Journal of Molecular Sciences, 24(7), 6440.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
