Mitochondrial Dysfunction, Genetic Predisposition, and Targeted Interventions in Neurodegenerative Diseases and Cognitive Decline: A Meta-Analysis of Mechanisms and Treatments

Authors

  • Sher Bano Shifa Tameer-e-Millat University, Islamabad, Pakistan.
  • Sonam Lohana Liaquat University of Medical and Health Sciences, Pakistan.
  • Harsha Sai Krishna Gottimukkala Institute UT, Health School of Public Health, Houston, USA.
  • Saja Saad Jordan University Hospital, Jordan
  • Mohammed Saad Jordan University Hospital, Jordan
  • Arun Kumar Maloth Kakatiya Medical College, Warangal, India.
  • Muhammad Uzair Liaquat University of Medical and Health Sciences, Pakistan.
  • Meera Al Shamsi Zayed Higher Organization for People of Determination, UAE.
  • Ahmed Elawady Mohamed El Hussein University Hospital, Alazhar University, Egypt.

DOI:

https://doi.org/10.70749/ijbr.v3i3.715

Keywords:

Mitochondrial Dysfunction, Genetic Predisposition, Neurodegenerative Diseases, Cognitive Decline, APOE4, Mitochondrial-Targeted Therapy

Abstract

Background: Neurodegenerative diseases (NDs) and cognitive decline pose a growing global health burden. Mitochondrial dysfunction and genetic predisposition are key contributors to disease progression. This meta-analysis evaluates their impact on cognitive decline and mitochondrial function while assessing potential therapeutic interventions. Methods: A systematic search was conducted across PubMed, Web of Science, PsycINFO, Cochrane Library, and Scopus (2015–2024). Eligible studies included RCTs, case-control, and experimental research examining mitochondrial dysfunction (ATP, ROS, MMP, mitophagy markers, DNA stability) and genetic factors (APOE4, PINK1, PARK2, TFAM) in Alzheimer’s, Parkinson’s, ALS, Huntington’s, and multiple system atrophy. A random-effects model (Hedges’ g) was used to calculate effect sizes. Results: Nine studies (n = 2,560) showed a significant association between mitochondrial dysfunction and cognitive decline (Hedges’ g = 0.85, 95% CI: 0.60–1.10, p = 0.003). APOE4 had the strongest correlation (OR = 2.10, 95% CI: 1.70–2.50, p < 0.001). Mitochondrial-targeted therapies improved cognitive function and mitochondrial stability. UDCA enhanced ATP synthesis (12% improvement, p = 0.02), liraglutide reduced oxidative stress (8%, p = 0.04), and TFAM gene therapy improved mitochondrial DNA repair (14%, p = 0.01). Moderate heterogeneity (I² = 42%) and minor publication bias were observed. Conclusions: This meta-analysis underscores the pivotal role of mitochondrial dysfunction and genetic predisposition in neurodegenerative disease progression. The findings highlight the potential of mitochondrial-targeted therapies in slowing cognitive decline, offering promising avenues for clinical intervention. Despite some heterogeneity, the consistency of effect sizes reinforces the reliability of these results. Future research should prioritize large-scale, standardized trials with long-term follow-up, incorporating novel biomarkers and precision medicine approaches to enhance clinical applicability and improve treatment strategies for neurodegenerative disorders.

Downloads

Download data is not yet available.

References

. Global status report on the public health response to dementia. Www.who.int. https://www.who.int/publications/i/item/9789240033245

Martin, P. (2015). World Alzheimer Report. https://www.alz.co.uk/research/WorldAlzheimerReport2015

Pan, W.-H., Yeh, W.-T., & Weng, L.-C. (2008). Epidemiology of metabolic syndrome in Asia. Asia Pacific Journal of Clinical Nutrition, 17 Suppl 1, 37–42. https://pubmed.ncbi.nlm.nih.gov/18296297/

Guerchet, M. M., Mayston, R., Lloyd-Sherlock, P., Prince, M. J., Aboderin, I., Akinyemi, R., Paddick, S.-M., Wimo, A., Amoakoh-Coleman, M., Uwakwe, R., & Ezeah, P. (2017). Dementia in sub-Saharan Africa: challenges and opportunities. In King’s College London. Alzheimer’s Disease International. https://kclpure.kcl.ac.uk/portal/en/publications/dementia-in-sub-saharan-africa-challenges-and-opportunities

Alzheimer's Association. (2023). 2023 Alzheimer’s Disease Facts and Figures. Alzheimer’s & Dementia, 19(4), 1598–1695. https://doi.org/10.1002/alz.13016

Wang, W., Zhao, F., Ma, X., Perry, G., & Zhu, X. (2020). Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Molecular Neurodegeneration, 15(30). https://doi.org/10.1186/s13024-020-00376-6

Bhat, A. H., Dar, K. B., Anees, S., Zargar, M. A., Masood, A., Sofi, M. A., & Ganie, S. A. (2015). Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 74, 101–110. https://doi.org/10.1016/j.biopha.2015.07.025

Khacho, M., Clark, A., Svoboda, D. S., MacLaurin, J. G., Lagace, D. C., Park, D. S., & Slack, R. S. (2017). Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis. Human Molecular Genetics, 26(17), 3327–3341. https://doi.org/10.1093/hmg/ddx217

Zhang, X.-X., Wei, M., Wang, H.-R., Hu, Y.-Z., Sun, H.-M., & Jia, J.-J. (2024). Mitochondrial dysfunction gene expression, DNA methylation, and inflammatory cytokines interaction activate Alzheimer’s disease: a multi-omics Mendelian randomization study. Journal of Translational Medicine, 22(1). https://doi.org/10.1186/s12967-024-05680-z

Payne, T. J., Appleby, M., Buckley, E., Gelder, L. V., Mullish, B. H., Sassani, M., Dunning, M. J., Hernandez, D. G., Scholz, S. W., McNeill, A., Libri, V., Moll, S., Marchesi, J. R., Richard, Su, L., Mazzà, C., Jenkins, T. M., Foltynie, T., & Bandmann, O. (2023). A Double‐Blind, Randomized, Placebo‐Controlled Trial of Ursodeoxycholic Acid (UDCA) in Parkinson’s Disease. Movement Disorders, 38(8), 1493–1502. https://doi.org/10.1002/mds.29450

Wang, J., Xiong, S., Xie, C., Markesbery, W. R., & Lovell, M. A. (2005). Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. Journal of Neurochemistry, 93(4), 953–962. https://doi.org/10.1111/j.1471-4159.2005.03053.x

Femminella, G. D., Frangou, E., Love, S. B., Busza, G., Holmes, C., Ritchie, C., Lawrence, R., McFarlane, B., Tadros, G., Ridha, B. H., Bannister, C., Walker, Z., Archer, H., Coulthard, E., Underwood, B. R., Prasanna, A., Koranteng, P., Karim, S., Junaid, K., & McGuinness, B. (2019). Evaluating the effects of the novel GLP-1 analogue liraglutide in Alzheimer’s disease: study protocol for a randomised controlled trial (ELAD study). Trials, 20(1). https://doi.org/10.1186/s13063-019-3259-x

Li, J., Yang, D., Li, Z., Zhao, M., Wang, D., Sun, Z., Wen, P., Dai, Y., Gou, F., Ji, Y., Zhao, D., & Yang, L. (2023). PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Research Reviews, 84, 101817–101817. https://doi.org/10.1016/j.arr.2022.101817

Grel, H., Woznica, D., Ratajczak, K., Kalwarczyk, E., Anchimowicz, J., Switlik, W., Olejnik, P., Zielonka, P., Stobiecka, M., & Jakiela, S. (2023). Mitochondrial Dynamics in Neurodegenerative Diseases: Unraveling the Role of Fusion and Fission Processes. International Journal of Molecular Sciences, 24(17), 13033. https://doi.org/10.3390/ijms241713033

Yang, D., Ying, J., Wang, X., Zhao, T., Yoon, S., Yang, F., Zheng, Q., Liu, X., Yao, W., & Hua, F. (2021). Mitochondrial Dynamics: A Key Role in Neurodegeneration and a Potential Target for Neurodegenerative Disease. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.654785

Wang, Q., Xue, H., Yue, Y., Hao, S., Huang, S.-H., & Zhang, Z. (2022). Role of mitophagy in the neurodegenerative diseases and its pharmacological advances: A review. Frontiers in Molecular Neuroscience, 15. https://doi.org/10.3389/fnmol.2022.1014251

Downloads

Published

2025-03-03

How to Cite

Bano, S., Lohana, S., Gottimukkala, H. S. K., Saad, S., Saad, M., Maloth, A. K., Uzair, M., Al Shamsi, M., & Mohamed, A. E. (2025). Mitochondrial Dysfunction, Genetic Predisposition, and Targeted Interventions in Neurodegenerative Diseases and Cognitive Decline: A Meta-Analysis of Mechanisms and Treatments. Indus Journal of Bioscience Research, 3(3), 1-8. https://doi.org/10.70749/ijbr.v3i3.715