Ecological Toxicity, Oxidative Stress and Impacts of Microplastics on Fish Gills
DOI:
https://doi.org/10.70749/ijbr.v3i3.785Keywords:
Microplastic, Gills, Oxidative Stress, Fish, ToxicityAbstract
Microplastics, which are small plastic particles less than 5 millimeters in size, originate from the degradation of larger plastic items or are intentionally manufactured for various uses. These particles have become ubiquitous in marine and freshwater environments, posing significant risks to aquatic life due to their ability to absorb and concentrate hazardous pollutants. The exposure to Microplastics (MPs), leads to DNA damage in fish that alters the hematological parameters and causes oxidative stress, thereby impacting the overall health of aquatic organisms. MPs also induce an imbalance in reactive oxygen species (ROS) production and antioxidant capacity, causing oxidative damage. In addition, MPs impact immune responses due to physical and chemical toxicity and cause neurotoxicity, altering AchE activity. This review highlights the toxic effects of MPs in fish through various indicators were examined including bioaccumulation, hematological parameters, antioxidant responses, immune responses and neurotoxicity in relation to MP exposure, facilitating the identification of biomarkers of MP toxicity following exposure of fish. This study highlights that the digestive tract contains more microplastics (MPs) than the gills, with fragments, fibers, films, and pellets being the predominant types. FTIR analysis identified polyethylene, polystyrene, polyvinylchloride, polyamide, and polycarbonate in MPs from both gills and the digestive system. MPs pollution triggered oxidative stress responses in gambusia from the East Java Brantas River. While PVC-MPs did not significantly affect gill histopathology or ion regulation, MPs combined with Cu were more toxic than individual pollutants. These findings emphasize the need for further research on the combined effects of MPs and heavy metals on aquatic ecosystems.
Downloads
References
Amelia, T. S., Khalik, W. M., Ong, M. C., Shao, Y. T., Pan, H., & Bhubalan, K. (2021). Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Progress in Earth and Planetary Science, 8(1). https://doi.org/10.1186/s40645-020-00405-4
Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596-1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
Ariyunita, S., Dhokhikah, Y., & Subchan, W. (2021). The first investigation of microplastics contamination in estuarine located in Puger district, Jember Regency, Indonesia. Jurnal Riset Biologi dan Aplikasinya, 3(1), 7. https://doi.org/10.26740/jrba.v3n1.p7-12
Aslam, M., Ahmad, S. R., Imtiaz, Z., Umar Aslam, H. M., Baqar, M., & Qadir, A. (2023). Risk assessment of microplastics in fish assemblage based on ecological preferences in an interconnected and polluted river system. Human and Ecological Risk Assessment: An International Journal, 29(7-8), 1109-1133. https://doi.org/10.1080/10807039.2023.2239942
Assas, M., Qiu, X., Chen, K., Ogawa, H., Xu, H., Shimasaki, Y., & Oshima, Y. (2020). Bioaccumulation and reproductive effects of fluorescent microplastics in medaka fish. Marine Pollution Bulletin, 158, 111446. https://doi.org/10.1016/j.marpolbul.2020.111446
Au, S. Y., Lee, C. M., Weinstein, J. E., Van den Hurk, P., & Klaine, S. J. (2017). Trophic transfer of microplastics in aquatic ecosystems: Identifying critical research needs. Integrated Environmental Assessment and Management, 13(3), 505-509. https://doi.org/10.1002/ieam.1907
Banaee, M., Multisanti, C. R., Impellitteri, F., Piccione, G., & Faggio, C. (2025). Environmental toxicology of microplastic particles on fish: A review. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 287, 110042. https://doi.org/10.1016/j.cbpc.2024.110042
Banaee, M., Soltanian, S., Sureda, A., Gholamhosseini, A., Haghi, B. N., Akhlaghi, M., & Derikvandy, A. (2019). Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus Carpio). Chemosphere, 236, 124335. https://doi.org/10.1016/j.chemosphere.2019.07.066
Banaee, M., Zeidi, A., Sinha, R., & Faggio, C. (2023). Individual and combined toxic effects of nano-zno and polyethylene microplastics on mosquito fish (Gambusia holbrooki). Water, 15(9), 1660. https://doi.org/10.3390/w15091660
Barboza, L. G., Lopes, C., Oliveira, P., Bessa, F., Otero, V., Henriques, B., Raimundo, J., Caetano, M., Vale, C., & Guilhermino, L. (2020). Microplastics in wild fish from north east Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Science of The Total Environment, 717, 134625. https://doi.org/10.1016/j.scitotenv.2019.134625
Barboza, L. G., Dick Vethaak, A., Lavorante, B. R., Lundebye, A., & Guilhermino, L. (2018). Marine microplastic debris: An emerging issue for food security, food safety and human health. Marine Pollution Bulletin, 133, 336-348. https://doi.org/10.1016/j.marpolbul.2018.05.047
Barboza, L. G., Vieira, L. R., Branco, V., Carvalho, C., & Guilhermino, L. (2018). Microplastics increase mercury bioconcentration in gills and bioaccumulation in the liver, and cause oxidative stress and damage in Dicentrarchus labrax juveniles. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-34125-z
Batel, A., Borchert, F., Reinwald, H., Erdinger, L., & Braunbeck, T. (2018). Microplastic accumulation patterns and transfer of benzo[a]pyrene to adult zebrafish (Danio rerio) gills and zebrafish embryos. Environmental Pollution, 235, 918-930. https://doi.org/10.1016/j.envpol.2018.01.028
Bobori, D. C., Dimitriadi, A., Feidantsis, K., Samiotaki, A., Fafouti, D., Sampsonidis, I., Kalogiannis, S., Kastrinaki, G., Lambropoulou, D. A., Kyzas, G. Z., Koumoundouros, G., Bikiaris, D. N., & Kaloyianni, M. (2022). Differentiation in the expression of toxic effects of polyethylene-microplastics on two freshwater fish species: Size matters. Science of The Total Environment, 830, 154603. https://doi.org/10.1016/j.scitotenv.2022.154603
Bobori, D. C., Feidantsis, K., Dimitriadi, A., Datsi, N., Ripis, P., Kalogiannis, S., Sampsonidis, I., Kastrinaki, G., Ainali, N. M., Lambropoulou, D. A., Kyzas, G. Z., Koumoundouros, G., Bikiaris, D. N., & Kaloyianni, M. (2022). Dose-dependent cytotoxicity of polypropylene microplastics (PP-MPs) in two freshwater fishes. International Journal of Molecular Sciences, 23(22), 13878. https://doi.org/10.3390/ijms232213878
Bojarski, B., Osikowski, A., Hofman, S., Szała, L., Szczygieł, J., & Rombel-Bryzek, A. (2022). Effects of exposure to a glyphosate-based herbicide on Haematological parameters, plasma biochemical indices and the microstructure of selected organs of the common carp ( cyprinus carpio Linnaeus, 1758). Folia Biologica, 70(4), 213-229. https://doi.org/10.3409/fb_70-4.24
Brun, N. R., Van Hage, P., Hunting, E. R., Haramis, A. G., Vink, S. C., Vijver, M. G., Schaaf, M. J., & Tudorache, C. (2019). Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish. Communications Biology, 2(1). https://doi.org/10.1038/s42003-019-0629-6
Burns, E. E., & Boxall, A. B. (2018). Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps. Environmental Toxicology and Chemistry, 37(11), 2776-2796. https://doi.org/10.1002/etc.4268
Buwono, N. R., Risjani, Y., & Soegianto, A. (2022). Oxidative stress responses of microplastic-contaminated Gambusia affinis obtained from the Brantas river in East Java, Indonesia. Chemosphere, 293, 133543. https://doi.org/10.1016/j.chemosphere.2022.133543
Cattaneo, N., Zarantoniello, M., Conti, F., Frontini, A., Chemello, G., Dimichino, B., Marongiu, F., Cardinaletti, G., Gioacchini, G., & Olivotto, I. (2023). Dietary microplastic administration during Zebrafish (Danio rerio) development: A comprehensive and comparative study between larval and juvenile stages. Animals, 13(14), 2256. https://doi.org/10.3390/ani13142256
Chen, X., Zhou, S., Liu, Y., Feng, Z., Mu, C., & Zhang, T. (2024). The combined effects of microplastics and bisphenol-A on the innate immune system response and intestinal microflora of the swimming crab Portunus trituberculatus. Aquatic Toxicology, 268, 106855. https://doi.org/10.1016/j.aquatox.2024.106855
Chércoles Asensio, R., San Andrés Moya, M., De la Roja, J. M., & Gómez, M. (2009). Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy. Analytical and Bioanalytical Chemistry, 395(7), 2081-2096. https://doi.org/10.1007/s00216-009-3201-2
Cole, M. (2016). A novel method for preparing microplastic fibers. Scientific Reports, 6(1). https://doi.org/10.1038/srep34519
Cózar, A., Echevarría, F., González-Gordillo, J. I., Irigoien, X., Úbeda, B., Hernández-León, S., Palma, Á. T., Navarro, S., García-de-Lomas, J., Ruiz, A., Fernández-de-Puelles, M. L., & Duarte, C. M. (2014). Plastic debris in the open ocean. Proceedings of the National Academy of Sciences, 111(28), 10239-10244. https://doi.org/10.1073/pnas.1314705111
Dantas, D. V., Ribeiro, C. I., Ito, L. S., Pezzin, A. P., Silveira, V. F., Cardozo, A. L., Gentil, E., Monteiro, I. B., Ribeiro, S. A., Lorenzi, L., & Machado, R. (2024). Influence of trophic overlaps and trophic niche amplitude on microplastic intake of fish species in shallow areas of a neotropical coastal lagoon. Science of The Total Environment, 927, 172235. https://doi.org/10.1016/j.scitotenv.2024.172235
Deng, J., Ibrahim, M. S., Tan, L. Y., Yeo, X. Y., Lee, Y. A., Park, S. J., Wüstefeld, T., Park, J., Jung, S., & Cho, N. (2022). Microplastics released from food containers can suppress lysosomal activity in mouse macrophages. Journal of Hazardous Materials, 435, 128980. https://doi.org/10.1016/j.jhazmat.2022.128980
Deng, Y., Yan, Z., Shen, R., Huang, Y., Ren, H., & Zhang, Y. (2021). Enhanced reproductive toxicities induced by phthalates contaminated microplastics in male mice (Mus musculus). Journal of Hazardous Materials, 406, 124644. https://doi.org/10.1016/j.jhazmat.2020.124644
Ding, J., Huang, Y., Liu, S., Zhang, S., Zou, H., Wang, Z., Zhu, W., & Geng, J. (2020). Toxicological effects of nano- and micro-polystyrene plastics on red tilapia: Are larger plastic particles more harmless? Journal of Hazardous Materials, 396, 122693. https://doi.org/10.1016/j.jhazmat.2020.122693
Ding, J., Zhang, S., Razanajatovo, R. M., Zou, H., & Zhu, W. (2018). Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus). Environmental Pollution, 238, 1-9. https://doi.org/10.1016/j.envpol.2018.03.001
Ding, L., Zhang, S., Wang, X., Yang, X., Zhang, C., Qi, Y., & Guo, X. (2020). The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi province, in north-western China. Science of The Total Environment, 720, 137525. https://doi.org/10.1016/j.scitotenv.2020.137525
Duan, Y., Wang, Y., Zhang, J., & Xiong, D. (2018). Elevated temperature disrupts the mucosal structure and induces an immune response in the intestine of whiteleg shrimp Litopenaeus vannamei (Boone, 1931) (Decapoda: Dendrobranchiata: Penaeidae). Journal of Crustacean Biology, 38(5), 635-640. https://doi.org/10.1093/jcbiol/ruy055
Duan, Y., Zhang, J., Wang, Y., Liu, Q., & Xiong, D. (2018). Nitrite stress disrupts the structural integrity and induces oxidative stress response in the intestines of Pacific white shrimp Litopenaeus vannamei. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 329(1), 43-50. https://doi.org/10.1002/jez.2162
Eerkes-Medrano, D., & Thompson, R. (2018). Occurrence, fate, and effect of microplastics in freshwater systems. Microplastic Contamination in Aquatic Environments, 95-132. https://doi.org/10.1016/b978-0-12-813747-5.00004-7
Eriksen, M., Lebreton, L. C., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., Galgani, F., Ryan, P. G., & Reisser, J. (2014). Plastic pollution in the world's oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE, 9(12), e111913. https://doi.org/10.1371/journal.pone.0111913
Espinosa, C., Cuesta, A., & Esteban, M. Á. (2017). Effects of dietary polyvinylchloride microparticles on general health, immune status and expression of several genes related to stress in gilthead seabream (Sparus aurata L.). Fish & Shellfish Immunology, 68, 251-259. https://doi.org/10.1016/j.fsi.2017.07.006
Facchetti, S. V., La Spina, R., Fumagalli, F., Riccardi, N., Gilliland, D., & Ponti, J. (2020). Detection of metal-doped fluorescent PVC microplastics in freshwater mussels. Nanomaterials, 10(12), 2363. https://doi.org/10.3390/nano10122363
Félix, L., Carreira, P., & Peixoto, F. (2023). Effects of chronic exposure of naturally weathered microplastics on oxidative stress level, behaviour, and mitochondrial function of adult zebrafish (Danio rerio). Chemosphere, 310, 136895. https://doi.org/10.1016/j.chemosphere.2022.136895
Ferrante, M. C., Monnolo, A., Del Piano, F., Mattace Raso, G., & Meli, R. (2022). The pressing issue of micro- and Nanoplastic contamination: Profiling the reproductive alterations mediated by oxidative stress. Antioxidants, 11(2), 193. https://doi.org/10.3390/antiox11020193
Filgueiras, A. V., Preciado, I., Cartón, A., & Gago, J. (2020). Microplastic ingestion by pelagic and benthic fish and diet composition: A case study in the NW iberian shelf. Marine Pollution Bulletin, 160, 111623. https://doi.org/10.1016/j.marpolbul.2020.111623
Fiorentino, I., Gualtieri, R., Barbato, V., Mollo, V., Braun, S., Angrisani, A., Turano, M., Furia, M., Netti, P. A., Guarnieri, D., Fusco, S., & Talevi, R. (2015). Energy independent uptake and release of polystyrene nanoparticles in primary mammalian cell cultures. Experimental Cell Research, 330(2), 240-247. https://doi.org/10.1016/j.yexcr.2014.09.017
Frias, J., & Nash, R. (2019). Microplastics: Finding a consensus on the definition. Marine Pollution Bulletin, 138, 145-147. https://doi.org/10.1016/j.marpolbul.2018.11.022
Galli, M., Tepsich, P., Baini, M., Panti, C., Rosso, M., Vafeiadou, A., Pantelidou, M., Moulins, A., & Fossi, M. C. (2022). Microplastic abundance and biodiversity richness overlap: Identification of sensitive areas in the western Ionian Sea. Marine Pollution Bulletin, 177, 113550. https://doi.org/10.1016/j.marpolbul.2022.113550
Garcia-Garin, O., Vighi, M., Aguilar, A., Tsangaris, C., Digka, N., Kaberi, H., & Borrell, A. (2019). Boops boops as a bioindicator of microplastic pollution along the Spanish Catalan coast. Marine Pollution Bulletin, 149, 110648. https://doi.org/10.1016/j.marpolbul.2019.110648
Hao, Y., Sun, Y., Li, M., Fang, X., Wang, Z., Zuo, J., & Zhang, C. (2023). Adverse effects of polystyrene microplastics in the freshwater commercial fish, grass carp (Ctenopharyngodon idella): Emphasis on physiological response and intestinal microbiome. Science of The Total Environment, 856, 159270. https://doi.org/10.1016/j.scitotenv.2022.159270
HASTUTI, A. R., LUMBANBATU, D. T., & WARDIATNO, Y. (2019). The presence of microplastics in the digestive tract of commercial fishes off Pantai Indah Kapuk coast, Jakarta, Indonesia. Biodiversitas Journal of Biological Diversity, 20(5). https://doi.org/10.13057/biodiv/d200513
Hollman, P. C., Bouwmeester, H., & Peters, R. J. B. (2013). Microplastics in aquatic food chain: sources, measurement, occurrence and potential health risks. https://library.wur.nl/WebQuery/wurpubs/reports/440009
Hu, M., & Palić, D. (2020). Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. Redox Biology, 37, 101620. https://doi.org/10.1016/j.redox.2020.101620
Huang, J., Wen, B., Xu, L., Ma, H., Li, X., Gao, J., & Chen, Z. (2022). Micro/nano-plastics cause neurobehavioral toxicity in discus fish (Symphysodon aequifasciatus): Insight from brain-gut-microbiota axis. Journal of Hazardous Materials, 421, 126830. https://doi.org/10.1016/j.jhazmat.2021.126830
Iheanacho, S. C., & Odo, G. E. (2020). Dietary exposure to polyvinyl chloride microparticles induced oxidative stress and hepatic damage in Clarias gariepinus (Burchell, 1822). Environmental Science and Pollution Research, 27(17), 21159-21173. https://doi.org/10.1007/s11356-020-08611-9
Ikuta, T., Tame, A., Takahashi, T., Nomaki, H., & Nakajima, R. (2022). Microplastic particles are phagocytosed in Gill cells of deep-sea and coastal mussels. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.1034950
Jabeen, K., Li, B., Chen, Q., Su, L., Wu, C., Hollert, H., & Shi, H. (2018). Effects of virgin microplastics on goldfish (Carassius auratus). Chemosphere, 213, 323-332. https://doi.org/10.1016/j.chemosphere.2018.09.031
Jabeen, K., Su, L., Li, J., Yang, D., Tong, C., Mu, J., & Shi, H. (2017). Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environmental Pollution, 221, 141-149. https://doi.org/10.1016/j.envpol.2016.11.055
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771. https://doi.org/10.1126/science.1260352
Jayapala, H., Jayasiri, H., Ranatunga, R., Perera, I., & Bellanthudawa, B. (2024). Ecological ramifications of marine debris in mangrove ecosystems: Estimation of substrate coverage and physical effects of marine debris on mangrove ecosystem in Negombo lagoon, Sri Lanka. Marine Pollution Bulletin, 201, 116184. https://doi.org/10.1016/j.marpolbul.2024.116184
Jeon, S., Jeon, J. H., Jeong, J., Kim, G., Lee, S., Kim, S., Maruthupandy, M., Lee, K., Yang, S. I., & Cho, W. (2023). Size- and oxidative potential-dependent toxicity of environmentally relevant expanded polystyrene styrofoam microplastics to macrophages. Journal of Hazardous Materials, 459, 132295. https://doi.org/10.1016/j.jhazmat.2023.132295
Jovanović, B., Gökdağ, K., Güven, O., Emre, Y., Whitley, E. M., & Kideys, A. E. (2018). Virgin microplastics are not causing imminent harm to fish after dietary exposure. Marine Pollution Bulletin, 130, 123-131. https://doi.org/10.1016/j.marpolbul.2018.03.016
Kadac-Czapska, K., Knez, E., Gierszewska, M., Olewnik-Kruszkowska, E., & Grembecka, M. (2023). Microplastics derived from food packaging waste—Their origin and health risks. Materials, 16(2), 674. https://doi.org/10.3390/ma16020674
Karami, A., Romano, N., Galloway, T., & Hamzah, H. (2016). Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish ( Clarias gariepinus ). Environmental Research, 151, 58-70. https://doi.org/10.1016/j.envres.2016.07.024
Karbalaei, S., Hanachi, P., Walker, T. R., & Cole, M. (2018). Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environmental Science and Pollution Research, 25(36), 36046-36063. https://doi.org/10.1007/s11356-018-3508-7
K C, P. B., Maharjan, A., Acharya, M., Lee, D., Kusma, S., Gautam, R., Kwon, J., Kim, C., Kim, K., Kim, H., & Heo, Y. (2023). Polytetrafluorethylene microplastic particles mediated oxidative stress, inflammation, and intracellular signaling pathway alteration in human derived cell lines. Science of The Total Environment, 897, 165295. https://doi.org/10.1016/j.scitotenv.2023.165295
Kelley, D. R., Schatz, M. C., & Salzberg, S. L. (2010). Quake: Quality-aware detection and correction of sequencing errors. Genome Biology, 11(11). https://doi.org/10.1186/gb-2010-11-11-r116
Kim, J., & Kang, J. (2015). The arsenic accumulation and its effect on oxidative stress responses in juvenile rockfish, Sebastes schlegelii, exposed to waterborne arsenic (As3+). Environmental Toxicology and Pharmacology, 39(2), 668-676. https://doi.org/10.1016/j.etap.2015.01.012
Kim, J., & Kang, J. (2015). The arsenic accumulation and its effect on oxidative stress responses in juvenile rockfish, Sebastes schlegelii, exposed to waterborne arsenic (As3+). Environmental Toxicology and Pharmacology, 39(2), 668-676. https://doi.org/10.1016/j.etap.2015.01.012
Kim, J., Yu, Y., & Choi, J. (2021). Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and neurotoxicity in fish exposed to microplastics: A review. Journal of Hazardous Materials, 413, 125423. https://doi.org/10.1016/j.jhazmat.2021.125423
Koelmans, A. A., Bakir, A., Burton, G. A., & Janssen, C. R. (2016). Microplastic as a vector for chemicals in the aquatic environment: Critical review and model-supported reinterpretation of empirical studies. Environmental Science & Technology, 50(7), 3315-3326. https://doi.org/10.1021/acs.est.5b06069
Köktürk, M., Özgeriş, F. B., Atamanalp, M., Uçar, A., Özdemir, S., Parlak, V., Duyar, H. A., & Alak, G. (2023). Microplastic-induced oxidative stress response in turbot and potential intake by humans. Drug and Chemical Toxicology, 47(3), 296-305. https://doi.org/10.1080/01480545.2023.2168690
Kolandhasamy, P., Su, L., Li, J., Qu, X., Jabeen, K., & Shi, H. (2018). Adherence of microplastics to soft tissue of mussels: A novel way to uptake microplastics beyond ingestion. Science of The Total Environment, 610-611, 635-640. https://doi.org/10.1016/j.scitotenv.2017.08.053
Laurén, D. J., & McDonald, D. G. (1987). Acclimation to copper by rainbow Trout,Salmo gairdneri: Biochemistry. Canadian Journal of Fisheries and Aquatic Sciences, 44(1), 105-111. https://doi.org/10.1139/f87-013
Law, K. L. (2017). Plastics in the marine environment. Annual Review of Marine Science, 9(1), 205-229. https://doi.org/10.1146/annurev-marine-010816-060409
Layn, A. A., Emiyarti, .., & Ira, .. (2020). Distribusi mikroplastik pada sedimen Di perairan teluk kendari. Jurnal Sapa Laut (Jurnal Ilmu Kelautan), 5(2), 115. https://doi.org/10.33772/jsl.v5i2.12165
Lee, J., Kang, J., & Kim, J. (2023). Toxic effects of microplastic (Polyethylene) on fish: Accumulation, hematological parameters and antioxidant responses in Korean bullhead, Pseudobagrus fulvidraco. Science of The Total Environment, 877, 162874. https://doi.org/10.1016/j.scitotenv.2023.162874
Lee, J., Choi, H., Hwang, U., Kang, J., Kang, Y. J., Kim, K. I., & Kim, J. (2019). Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. Environmental Toxicology and Pharmacology, 68, 101-108. https://doi.org/10.1016/j.etap.2019.03.010
Lei, L., Wu, S., Lu, S., Liu, M., Song, Y., Fu, Z., Shi, H., Raley-Susman, K. M., & He, D. (2018). Microplastic particles cause intestinal damage and other adverse effects in zebrafish danio rerio and nematode Caenorhabditis elegans. Science of The Total Environment, 619-620, 1-8. https://doi.org/10.1016/j.scitotenv.2017.11.103
Li, J., Liu, H., & Paul Chen, J. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137, 362-374. https://doi.org/10.1016/j.watres.2017.12.056
Li, J., Qu, X., Su, L., Zhang, W., Yang, D., Kolandhasamy, P., Li, D., & Shi, H. (2016). Microplastics in mussels along the coastal waters of China. Environmental Pollution, 214, 177-184. https://doi.org/10.1016/j.envpol.2016.04.012
Liang, W., Li, B., Jong, M., Ma, C., Zuo, C., Chen, Q., & Shi, H. (2023). Process-oriented impacts of microplastic fibers on behavior and histology of fish. Journal of Hazardous Materials, 448, 130856. https://doi.org/10.1016/j.jhazmat.2023.130856
Lin, H., & Randall, D. (1991). Evidence for the presence of an electrogenic proton pump on the trout Gill epithelium. Journal of Experimental Biology, 161(1), 119-134. https://doi.org/10.1242/jeb.161.1.119
Liu, L., Xu, K., Zhang, B., Ye, Y., Zhang, Q., & Jiang, W. (2021). Cellular internalization and release of polystyrene microplastics and nanoplastics. Science of The Total Environment, 779, 146523. https://doi.org/10.1016/j.scitotenv.2021.146523
Livingstone, D. (2001). Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollution Bulletin, 42(8), 656-666. https://doi.org/10.1016/s0025-326x(01)00060-1
Löhr, A., Savelli, H., Beunen, R., Kalz, M., Ragas, A., & Van Belleghem, F. (2017). Solutions for global marine litter pollution. Current Opinion in Environmental Sustainability, 28, 90-99. https://doi.org/10.1016/j.cosust.2017.08.009
Lu, I., Chao, H., Mansor, W., Peng, C., Hsu, Y., Yu, T., Chang, W., & Fu, L. (2021). Levels of phthalates, Bisphenol-A, Nonylphenol, and microplastics in fish in the estuaries of northern Taiwan and the impact on human health. Toxics, 9(10), 246. https://doi.org/10.3390/toxics9100246
Lu, Y., Zhang, Y., Deng, Y., Jiang, W., Zhao, Y., Geng, J., ... & Ren, H. (2016). Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environmental science & technology, 50(7), 4054-4060. https://pubs.acs.org/doi/abs/10.1021/acs.est.6b00183
Lusher, A., McHugh, M., & Thompson, R. (2013). Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Marine Pollution Bulletin, 67(1-2), 94-99. https://doi.org/10.1016/j.marpolbul.2012.11.028
Lynch, S. (2018). OpenLitterMap.com – Open data on plastic pollution with blockchain rewards (Littercoin). Open Geospatial Data, Software and Standards, 3(1). https://doi.org/10.1186/s40965-018-0050-y
Madison, B. N., Tavakoli, S., Kramer, S., & Bernier, N. J. (2015). Chronic cortisol and the regulation of food intake and the endocrine growth axis in rainbow trout. Journal of Endocrinology, 226(2), 103-119. https://doi.org/10.1530/joe-15-0186
McCormick, M. I., Chivers, D. P., Ferrari, M. C., Blandford, M. I., Nanninga, G. B., Richardson, C., Fakan, E. P., Vamvounis, G., Gulizia, A. M., & Allan, B. J. (2020). Microplastic exposure interacts with habitat degradation to affect behaviour and survival of juvenile fish in the field. Proceedings of the Royal Society B: Biological Sciences, 287(1937), 20201947. https://doi.org/10.1098/rspb.2020.1947
Meng, L., Zhang, Y., Wan, X., Li, C., Zhang, X., Wang, Y., Ke, X., Xiao, Z., Ding, L., Xia, R., Yip, H., Cao, Y., & Chen, Y. (2018). Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 361(6407), 1094-1098. https://doi.org/10.1126/science.aat2612
Movahedini, A., Abtahi, B., & Bahmani, M. (2012). Gill histopathological lesions of the sturgeons. Asian Journal of Animal and Veterinary Advances, 7(8), 710-717. https://doi.org/10.3923/ajava.2012.710.717
Mu, X., Qi, S., Liu, J., Yuan, L., Huang, Y., Xue, J., Qian, L., Wang, C., & Li, Y. (2021). Toxicity and behavioral response of zebrafish exposed to combined microplastic and bisphenol analogues. Environmental Chemistry Letters, 20(1), 41-48. https://doi.org/10.1007/s10311-021-01320-w
Nabila, A., & Patria, M. P. (2021). Microplastics abundance in gills and gastrointestinal tract of Epinephelus fuscoguttatus-lanceolatus at the coastal of pulau Panjang, serang, Banten. E3S Web of Conferences, 324, 01002. https://doi.org/10.1051/e3sconf/202132401002
Ory, N., Chagnon, C., Felix, F., Fernández, C., Ferreira, J. L., Gallardo, C., Garcés Ordóñez, O., Henostroza, A., Laaz, E., Mizraji, R., Mojica, H., Murillo Haro, V., Ossa Medina, L., Preciado, M., Sobral, P., Urbina, M. A., & Thiel, M. (2018). Low prevalence of microplastic contamination in planktivorous fish species from the southeast Pacific Ocean. Marine Pollution Bulletin, 127, 211-216. https://doi.org/10.1016/j.marpolbul.2017.12.016
Pan, L., Yu, D., Zhang, Y., Zhu, C., Yin, Q., Hu, Y., Zhang, X., Yue, R., & Xiong, X. (2021). Polystyrene microplastics-triggered mitophagy and oxidative burst via activation of PERK pathway. Science of The Total Environment, 781, 146753. https://doi.org/10.1016/j.scitotenv.2021.146753
Pannetier, P., Morin, B., Le Bihanic, F., Dubreil, L., Clérandeau, C., Chouvellon, F., Van Arkel, K., Danion, M., & Cachot, J. (2020). Environmental samples of microplastics induce significant toxic effects in fish larvae. Environment International, 134, 105047. https://doi.org/10.1016/j.envint.2019.105047
Prata, J. C., Da Costa, J. P., Lopes, I., Duarte, A. C., & Rocha-Santos, T. (2020). Environmental exposure to microplastics: An overview on possible human health effects. Science of The Total Environment, 702, 134455. https://doi.org/10.1016/j.scitotenv.2019.134455
Qi, R., Jones, D. L., Li, Z., Liu, Q., & Yan, C. (2020). Behavior of microplastics and plastic film residues in the soil environment: A critical review. Science of The Total Environment, 703, 134722. https://doi.org/10.1016/j.scitotenv.2019.134722
Qian, L., Liu, J., Lin, Z., Chen, X., Yuan, L., Shen, G., Yang, W., Wang, D., Huang, Y., Pang, S., Mu, X., Wang, C., & Li, Y. (2020). Evaluation of the spinal effects of phthalates in a zebrafish embryo assay. Chemosphere, 249, 126144. https://doi.org/10.1016/j.chemosphere.2020.126144
Qiao, R., Deng, Y., Zhang, S., Wolosker, M. B., Zhu, Q., Ren, H., & Zhang, Y. (2019). Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere, 236, 124334. https://doi.org/10.1016/j.chemosphere.2019.07.065
Raza, T., Rasool, B., Asrar, M., Manzoor, M., Javed, Z., Jabeen, F., & Younis, T. (2023). Exploration of polyacrylamide microplastics and evaluation of their toxicity on multiple parameters of Oreochromis niloticus. Saudi Journal of Biological Sciences, 30(2), 103518. https://doi.org/10.1016/j.sjbs.2022.103518
Reichert, J., Arnold, A. L., Hoogenboom, M. O., Schubert, P., & Wilke, T. (2019). Impacts of microplastics on growth and health of hermatypic corals are species-specific. Environmental Pollution, 254, 113074. https://doi.org/10.1016/j.envpol.2019.113074
Ribeiro, F., Garcia, A. R., Pereira, B. P., Fonseca, M., Mestre, N. C., Fonseca, T. G., Ilharco, L. M., & Bebianno, M. J. (2017). Microplastics effects in Scrobicularia plana. Marine Pollution Bulletin, 122(1-2), 379-391. https://doi.org/10.1016/j.marpolbul.2017.06.078
Rios-Fuster, B., Arechavala-Lopez, P., García-Marcos, K., Alomar, C., Compa, M., Álvarez, E., Julià, M. M., Solomando Martí, A., Sureda, A., & Deudero, S. (2021). Experimental evidence of physiological and behavioral effects of microplastic ingestion in Sparus aurata. Aquatic Toxicology, 231, 105737. https://doi.org/10.1016/j.aquatox.2020.105737
Rist, S., Baun, A., & Hartmann, N. B. (2017). Ingestion of micro- and nanoplastics in Daphnia magna – Quantification of body burdens and assessment of feeding rates and reproduction. Environmental Pollution, 228, 398-407. https://doi.org/10.1016/j.envpol.2017.05.048
Rochman, C. M., Tahir, A., Williams, S. L., Baxa, D. V., Lam, R., Miller, J. T., Teh, F., Werorilangi, S., & Teh, S. J. (2015). Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific Reports, 5(1). https://doi.org/10.1038/srep14340
Roda, J. F., Lauer, M. M., Risso, W. E., & Bueno dos Reis Martinez, C. (2020). Microplastics and copper effects on the neotropical teleost Prochilodus lineatus: Is there any interaction? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 242, 110659. https://doi.org/10.1016/j.cbpa.2020.110659
Rubin, A. E., & Zucker, I. (2022). Interactions of microplastics and organic compounds in aquatic environments: A case study of augmented joint toxicity. Chemosphere, 289, 133212. https://doi.org/10.1016/j.chemosphere.2021.133212
Saenen, N., Witters, M., Hantoro, I., Tejeda, I., Ethirajan, A., Van Belleghem, F., & Smeets, K. (2023). P17-09: Polystyrene microplastics of varying sizes and shapes induce distinct redox and mitochondrial stress responses in a caco-2 monolayer. Toxicology Letters, 384, S211-S212. https://doi.org/10.1016/s0378-4274(23)00753-1
Salimi, A., Alavehzadeh, A., Ramezani, M., & Pourahmad, J. (2022). Differences in sensitivity of human lymphocytes and fish lymphocytes to polyvinyl chloride microplastic toxicity. Toxicology and Industrial Health, 38(2), 100-111. https://doi.org/10.1177/07482337211065832
Scherer, C., Weber, A., Lambert, S., & Wagner, M. (2017). Interactions of microplastics with freshwater biota. The Handbook of Environmental Chemistry, 153-180. https://doi.org/10.1007/978-3-319-61615-5_8
Siddiqui, S. A., Singh, S., Bahmid, N. A., Shyu, D. J., Domínguez, R., Lorenzo, J. M., Pereira, J. A., & Câmara, J. S. (2023). Polystyrene microplastic particles in the food chain: Characteristics and toxicity - A review. Science of The Total Environment, 892, 164531. https://doi.org/10.1016/j.scitotenv.2023.164531
Sinha, A. K., Kapotwe, M., Dabi, S. B., Montes, C. D., Shrivastava, J., Blust, R., & Boeck, G. D. (2016). Differential modulation of ammonia excretion, rhesus glycoproteins and ion-regulation in common carp (Cyprinus Carpio) following individual and combined exposure to waterborne copper and ammonia. Aquatic Toxicology, 170, 129-141. https://doi.org/10.1016/j.aquatox.2015.11.020
Sinha, A. K., Liew, H. J., Nawata, C. M., Blust, R., Wood, C. M., & De Boeck, G. (2013). Modulation of Rh glycoproteins, ammonia excretion and Na+ fluxes in three freshwater teleosts when exposed chronically to high environmental ammonia. Journal of Experimental Biology. https://doi.org/10.1242/jeb.084574
Su, L., Deng, H., Li, B., Chen, Q., Pettigrove, V., Wu, C., & Shi, H. (2019). The occurrence of microplastic in specific organs in commercially caught fishes from coast and Estuary area of east China. Journal of Hazardous Materials, 365, 716-724. https://doi.org/10.1016/j.jhazmat.2018.11.024
Subaramaniyam, U., Allimuthu, R. S., Vappu, S., Ramalingam, D., Balan, R., Paital, B., Panda, N., Rath, P. K., Ramalingam, N., & Sahoo, D. K. (2023). Effects of microplastics, pesticides and nano-materials on fish health, oxidative stress and antioxidant defense mechanism. Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1217666
Sun, X., Li, Q., Shi, Y., Zhao, Y., Zheng, S., Liang, J., Liu, T., & Tian, Z. (2019). Characteristics and retention of microplastics in the digestive tracts of fish from the Yellow Sea. Environmental Pollution, 249, 878-885. https://doi.org/10.1016/j.envpol.2019.01.110
Tanaka, K., & Takada, H. (2016). Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Scientific Reports, 6(1). https://doi.org/10.1038/srep34351
Thushari, G., & Senevirathna, J. (2020). Plastic pollution in the marine environment. Heliyon, 6(8), e04709. https://doi.org/10.1016/j.heliyon.2020.e04709
Turner, A., & Holmes, L. A. (2015). Adsorption of trace metals by microplastic pellets in fresh water. Environmental Chemistry, 12(5), 600. https://doi.org/10.1071/en14143
Wang, J., Li, Y., Lu, L., Zheng, M., Zhang, X., Tian, H., Wang, W., & Ru, S. (2019). Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma). Environmental Pollution, 254, 113024. https://doi.org/10.1016/j.envpol.2019.113024
Wang, W., Ge, J., & Yu, X. (2020). Bioavailability and toxicity of microplastics to fish species: A review. Ecotoxicology and Environmental Safety, 189, 109913. https://doi.org/10.1016/j.ecoenv.2019.109913
Watts, A. J., Lewis, C., Goodhead, R. M., Beckett, S. J., Moger, J., Tyler, C. R., & Galloway, T. S. (2014). Uptake and retention of microplastics by the shore crab Carcinus maenas. Environmental Science & Technology, 48(15), 8823-8830. https://doi.org/10.1021/es501090e
Wayman, C., & Niemann, H. (2021). The fate of plastic in the ocean environment – a minireview. Environmental Science: Processes & Impacts, 23(2), 198-212. https://doi.org/10.1039/d0em00446d
Wei, J., Wang, X., Liu, Q., Zhou, N., Zhu, S., Li, Z., Li, X., Yao, J., & Zhang, L. (2021). The impact of polystyrene microplastics on cardiomyocytes pyroptosis through NLRP3/Caspase‐1 signaling pathway and oxidative stress in Wistar rats. Environmental Toxicology, 36(5), 935-944. https://doi.org/10.1002/tox.23095
Wright, S. L., & Kelly, F. J. (2017). Plastic and human health: A micro issue? Environmental Science & Technology, 51(12), 6634-6647. https://doi.org/10.1021/acs.est.7b00423
Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: A review. Environmental Pollution, 178, 483-492. https://doi.org/10.1016/j.envpol.2013.02.031
Xia, X., Sun, M., Zhou, M., Chang, Z., & Li, L. (2020). Polyvinyl chloride microplastics induce growth inhibition and oxidative stress in cyprinus Carpio Var. larvae. Science of The Total Environment, 716, 136479. https://doi.org/10.1016/j.scitotenv.2019.136479
Xu, Y., Kraft, M., & Xu, R. (2016). Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting. Chemical Society Reviews, 45(11), 3039-3052. https://doi.org/10.1039/c5cs00729a
Yin, L., Chen, B., Xia, B., Shi, X., & Qu, K. (2018). Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii). Journal of Hazardous Materials, 360, 97-105. https://doi.org/10.1016/j.jhazmat.2018.07.110
Yin, X., Wu, J., Liu, Y., Chen, X., Xie, C., Liang, Y., Li, J., & Jiang, Z. (2022). Accumulation of microplastics in fish guts and gills from a large natural lake: Selective or non-selective? Environmental Pollution, 309, 119785. https://doi.org/10.1016/j.envpol.2022.119785
Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). Understanding deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3), 107-115. https://doi.org/10.1145/3446776
Zhang, F., Li, D., Yang, Y., Zhang, H., Zhu, J., Liu, J., Bu, X., Li, E., Qin, J., Yu, N., Chen, L., & Wang, X. (2022). Combined effects of polystyrene microplastics and copper on antioxidant capacity, immune response and intestinal microbiota of Nile tilapia (Oreochromis niloticus). Science of The Total Environment, 808, 152099. https://doi.org/10.1016/j.scitotenv.2021.152099
Zhang, W., Sun, X., Qi, X., Liu, X., Zhang, Y., Qiao, S., & Lin, H. (2022). Di-(2-Ethylhexyl) phthalate and microplastics induced neuronal Apoptosis through the PI3K/AKT pathway and mitochondrial dysfunction. Journal of Agricultural and Food Chemistry, 70(35), 10771-10781. https://doi.org/10.1021/acs.jafc.2c05474
Zhao, Y., Qin, Z., Huang, Z., Bao, Z., Luo, T., & Jin, Y. (2021). Effects of polyethylene microplastics on the microbiome and metabolism in larval zebrafish. Environmental Pollution, 282, 117039. https://doi.org/10.1016/j.envpol.2021.117039
Zitouni, N., Bousserrhine, N., Missawi, O., Boughattas, I., Chèvre, N., Santos, R., Belbekhouche, S., Alphonse, V., Tisserand, F., Balmassiere, L., Dos Santos, S. P., Mokni, M., Guerbej, H., & Banni, M. (2021). Uptake, tissue distribution and toxicological effects of environmental microplastics in early juvenile fish Dicentrarchus labrax. Journal of Hazardous Materials, 403, 124055. https://doi.org/10.1016/j.jhazmat.2020.124055
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
