Nano-Engineering for Precision Oncology Unraveling Molecular Mechanisms and Pioneering Revolutionary Cancer Therapies

Authors

  • Ayesha Liaqat Department of Zoology, Government College University Faisalabad, Punjab, Pakistan.
  • Mohsin Saleem Ghouri Department of Chemistry, Government Murray Graduate College, Sialkot, Punjab, Pakistan.
  • Raheela Shehzadi Department of Biological Sciences, Superior University Lahore, Punjab, Pakistan.
  • Rida Munir Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Punjab, Pakistan.
  • Mehwish Bashir Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Punjab, Pakistan.
  • Ali Rehmat Department of Medical Physics, NED University of Engineering and Technology, Karachi, Sindh, Pakistan.
  • Malka Saba Bashir Department of Zoology, The Women University Multan, Punjab, Pakistan.
  • Muhammad Irshad Department of Computer Science, Shah Abdul Latif University, Khairpur, Sindh, Pakistan.
  • Haseeb Ahmed Department of Biochemistry and Biotechnology, University of Gujrat, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i3.810

Keywords:

Nano-engineering, Precision Oncology, Molecular Mechanisms, Targeted Drug Delivery, Nanomedicine, Cancer Therapy, Tumor Microenvironment, Nanoparticles, Nanocarriers, Personalized Medicine, Immunotherapy, Theranostics, Biomarker-Driven Therapy, Nanotechnology in Oncology, Nano Drugs, Cancer Nano Theranostics,, Molecular Targeting, Nanostructures, Cancer Diagnostics, Controlled Drug Release

Abstract

With previously unheard-of improvements in cancer detection, therapy, and monitoring, nano-engineering has become a game-changer in precision oncology. Researchers can create nanoscale drug delivery systems that maximize therapeutic efficacy and reduce systemic toxicity by utilizing nanotechnology. With an emphasis on targeted drug delivery, tumor microenvironment manipulation, and nanocarrier-mediated immunotherapy, this study investigates the molecular processes underlying nano-engineered therapeutics. By increasing specificity and lowering side effects, innovations including photothermal and photodynamic therapy, biomimetic nanostructures, and nanoparticle-based CRISPR gene editing are transforming the treatment of cancer. Furthermore, real-time, non-invasive cancer detection and monitoring are made possible by liquid biopsy technologies and nano-biosensors, allowing for early intervention and individualized treatment plans. A comprehensive approach to cancer management is provided by the interaction of nanotechnology and molecular oncology, which also makes it easier to create multipurpose nanoplatforms that combine diagnosis and treatment (theranostics). Nano-engineering has enormous promise to overcome drug resistance, improve immune system engagement, and enable precision-targeted treatments as precision oncology develops. To enable clinical translation, however, issues including biocompatibility, large-scale production, and regulatory permissions need to be resolved. With a focus on its role in developing ground-breaking cancer treatments and changing the face of precision oncology, this study focuses on recent advances, present difficulties, and potential future paths in nano-engineering for cancer therapy.

Downloads

Download data is not yet available.

References

Abbas, Z., & Rehman, S. (2018). An overview of cancer treatment modalities. Neoplasm, 1, 139-157. https://doi.org/10.5772/intechopen.76558

Adeola, H. A., Van Wyk, J. C., Arowolo, A. T., & Khumalo, N. P. (2018). Human hair as a testing substrate in the era of precision medicine: Potential role of ‘omics-based approaches. Keratin. https://doi.org/10.5772/intechopen.77215

An, M., Feng, Y., Liu, Y., & Yang, H. (2023). External power-driven micro/nanorobots: Design, fabrication, and functionalization for tumor diagnosis and therapy. Progress in Materials Science, 140, 101204. https://doi.org/10.1016/j.pmatsci.2023.101204

Baghban, R., Roshangar, L., Jahanban-Esfahlan, R., Seidi, K., Ebrahimi-Kalan, A., Jaymand, M., Kolahian, S., Javaheri, T., & Zare, P. (2020). Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling, 18(1). https://doi.org/10.1186/s12964-020-0530-4

Brook Chernet, M. L. (2014). Endogenous voltage potentials and the microenvironment: Bioelectric signals that reveal, induce and normalize cancer. Journal of Clinical & Experimental Oncology, s1(01). https://doi.org/10.4172/2324-9110.s1-002

Capuozzo, M., Santorsola, M., Ianniello, M., Ferrara, F., Zovi, A., Petrillo, N., Castiello, R., Fantuz, M., Ottaiano, A., & Savarese, G. (2024). Innovative drug modalities for the treatment of advanced prostate cancer. Diseases, 12(5), 87. https://doi.org/10.3390/diseases12050087

Chen, Y., & Ping, Y. (2023). Development of CRISPR/Cas delivery systems for in vivo precision genome editing. Accounts of Chemical Research, 56(16), 2185-2196. https://doi.org/10.1021/acs.accounts.3c00279

Cheng, Y., Zhang, H., Wei, H., & Yu, C. (2024). Injectable hydrogels as emerging drug-delivery platforms for tumor therapy. Biomaterials Science, 12(5), 1151-1170. https://doi.org/10.1039/d3bm01840g

Chira, S., Nutu, A., Isacescu, E., Bica, C., Pop, L., Ciocan, C., & Berindan-Neagoe, I. (2022). Genome editing approaches with CRISPR/Cas9 for cancer treatment: Critical appraisal of preclinical and clinical utility, challenges, and future research. Cells, 11(18), 2781. https://doi.org/10.3390/cells11182781

Costa, F. P., Wiedenmann, B., Schöll, E., & Tuszynski, J. (2024). Emerging cancer therapies: Targeting physiological networks and cellular bioelectrical differences with non-thermal systemic electromagnetic fields in the human body – a comprehensive review. Frontiers in Network Physiology, 4. https://doi.org/10.3389/fnetp.2024.1483401

Debela, D. T., Muzazu, S. G., Heraro, K. D., Ndalama, M. T., Mesele, B. W., Haile, D. C., Kitui, S. K., & Manyazewal, T. (2021). New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Medicine, 9. https://doi.org/10.1177/20503121211034366

Farhana, A., Alsrhani, A., Khan, Y. S., & Rasheed, Z. (2023). Cancer Bioenergetics and tumor microenvironments—Enhancing chemotherapeutics and targeting resistant niches through Nanosystems. Cancers, 15(15), 3836. https://doi.org/10.3390/cancers15153836

Fei, W., Zhang, Y., Ye, Y., Li, C., Yao, Y., Zhang, M., Li, F., & Zheng, C. (2020). Bioactive metal-containing nanomaterials for ferroptotic cancer therapy. Journal of Materials Chemistry B, 8(46), 10461-10473. https://doi.org/10.1039/d0tb02138e

Gao, S., Yang, X., Xu, J., Qiu, N., & Zhai, G. (2021). Nanotechnology for boosting cancer immunotherapy and remodeling tumor microenvironment: The horizons in cancer treatment. ACS Nano, 15(8), 12567-12603. https://doi.org/10.1021/acsnano.1c02103

Ge, Z., & Liu, S. (2013). Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chemical Society Reviews, 42(17), 7289. https://doi.org/10.1039/c3cs60048c

Grinin, L., Grinin, A., & Korotayev, A. (2024). Nanotechnologies, robotics, artificial intelligence and other MANBRIC technologies in the long-term development. World-Systems Evolution and Global Futures, 403-457. https://doi.org/10.1007/978-3-031-56764-3_10

Huang, Y., Yao, K., Zhang, Q., Huang, X., Chen, Z., Zhou, Y., & Yu, X. (2024). Bioelectronics for electrical stimulation: Materials, devices and biomedical applications. Chemical Society Reviews, 53(17), 8632-8712. https://doi.org/10.1039/d4cs00413b

Innao, V., Allegra, A. G., Musolino, C., & Allegra, A. (2020). New frontiers about the role of human microbiota in immunotherapy: The immune checkpoint inhibitors and CAR T-cell therapy era. International Journal of Molecular Sciences, 21(23), 8902. https://doi.org/10.3390/ijms21238902

Jakóbisiak, M., Lasek, W., & Gołąb, J. (2003). Natural mechanisms protecting against cancer. Immunology Letters, 90(2-3), 103-122. https://doi.org/10.1016/j.imlet.2003.08.005

Jin, H., Wang, L., & Bernards, R. (2022). Rational combinations of targeted cancer therapies: Background, advances and challenges. Nature Reviews Drug Discovery, 22(3), 213-234. https://doi.org/10.1038/s41573-022-00615-z

Jung, L., Narayan, P., Sreenivasan, S. T., & Narayan, M. (2020). Untangling the potential of carbon quantum dots in neurodegenerative disease. Processes, 8(5), 599. https://doi.org/10.3390/pr8050599

Kasegn, M. M., Gebremedhn, H. M., Yaekob, A. T., & Mesele, E. (2025). The power of deoxyribonucleic acid and bio-robotics in creating new global revolution: A review. Health Nanotechnology, 1(1). https://doi.org/10.1186/s44301-024-00002-0

Kashani, G. K., Naghib, S. M., Soleymani, S., & Mozafari, M. (2024). A review of DNA nanoparticles-encapsulated drug/gene/protein for advanced controlled drug release: Current status and future perspective over emerging therapy approaches. International Journal of Biological Macromolecules, 268, 131694. https://doi.org/10.1016/j.ijbiomac.2024.131694

Khafaga, A. F., Gaballa, M., Karam, R., Shoulah, S. A., Shamma, R. N., Khalifa, N. E., Farrag, N. E., & Noreldin, A. E. (2024). Synergistic therapeutic strategies and engineered nanoparticles for anti-vascular endothelial growth factor therapy in cancer. Life Sciences, 341, 122499. https://doi.org/10.1016/j.lfs.2024.122499

Leone, R. D., & Powell, J. D. (2020). Metabolism of immune cells in cancer. Nature Reviews Cancer, 20(9), 516-531. https://doi.org/10.1038/s41568-020-0273-y

Li, Y., Li, X., Wei, L., & Ye, J. (2024). Advancements in mitochondrial-targeted nanotherapeutics: Overcoming biological obstacles and optimizing drug delivery. Frontiers in Immunology, 15. https://doi.org/10.3389/fimmu.2024.1451989

Li, Y., Zheng, X., & Chu, Q. (2021). Bio-based nanomaterials for cancer therapy. Nano Today, 38, 101134. https://doi.org/10.1016/j.nantod.2021.101134

Liu, B., Zhou, H., Tan, L., Siu, K. T., & Guan, X. (2024). Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduction and Targeted Therapy, 9(1). https://doi.org/10.1038/s41392-024-01856-7

Ma, C., & Gurkan-Cavusoglu, E. (2024). A comprehensive review of computational cell cycle models in guiding cancer treatment strategies. npj Systems Biology and Applications, 10(1). https://doi.org/10.1038/s41540-024-00397-7

Mazumdar, H., Khondakar, K. R., Das, S., Halder, A., & Kaushik, A. (2024). Artificial intelligence for personalized nanomedicine; from material selection to patient outcomes. Expert Opinion on Drug Delivery, 22(1), 85-108. https://doi.org/10.1080/17425247.2024.2440618

Morganti, S., Tarantino, P., Ferraro, E., D’Amico, P., Duso, B. A., & Curigliano, G. (2019). Next generation sequencing (NGS): A revolutionary technology in Pharmacogenomics and personalized medicine in cancer. Advances in Experimental Medicine and Biology, 9-30. https://doi.org/10.1007/978-3-030-24100-1_2

Nguyet, N. T., Hai Yen, L. T., Van Thu, V., Lan, H., Trung, T., Vuong, P. H., & Tam, P. D. (2018). Highly sensitive DNA sensors based on cerium oxide nanorods. Journal of Physics and Chemistry of Solids, 115, 18-25. https://doi.org/10.1016/j.jpcs.2017.11.023

Pei, Z., Lei, H., & Cheng, L. (2023). Bioactive inorganic nanomaterials for cancer theranostics. Chemical Society Reviews, 52(6), 2031-2081. https://doi.org/10.1039/d2cs00352j

Pollock, J. F., & Healy, K. E. (2008). Biomimetic and bio-responsive materials in regenerative medicine: intelligent materials for healing living tissues. In Strategies in regenerative medicine: Integrating biology with materials design (pp. 1-58). New York, NY: Springer, New York.

Rainey, J., Vander Stoep, C., & Holley, M. (2024). Chronic kidney disease reversal: Case study. Journal of Cardiovascular Medicine and Cardiology, 11(4), 068-079. https://doi.org/10.17352/2455-2976.000211

Ramezani, G., Stiharu, I., Van de Ven, T. G., & Nerguizian, V. (2023). Advancement in biosensor technologies of 2D MaterialIntegrated with cellulose—Physical properties. Micromachines, 15(1), 82. https://doi.org/10.3390/mi15010082

Richard, P. U., Duskey, J. T., Stolarov, S., Spulber, M., & Palivan, C. G. (2015). New concepts to fight oxidative stress: Nanosized three-dimensional supramolecular antioxidant assemblies. Expert Opinion on Drug Delivery, 12(9), 1527-1545. https://doi.org/10.1517/17425247.2015.1036738

Saminathan, A., Zajac, M., Anees, P., & Krishnan, Y. (2021). Organelle-level precision with next-generation targeting technologies. Nature Reviews Materials, 7(5), 355-371. https://doi.org/10.1038/s41578-021-00396-8

Shi, J., Sun, C., Liang, E., & Tian, B. (2021). Semiconductor nanowire‐based cellular and subcellular interfaces. Advanced Functional Materials, 32(11). https://doi.org/10.1002/adfm.202107997

Solaini, G., Baracca, A., Lenaz, G., & Sgarbi, G. (2010). Hypoxia and mitochondrial oxidative metabolism. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1797(6-7), 1171-1177. https://doi.org/10.1016/j.bbabio.2010.02.011

Sun, B., Bte Rahmat, J. N., & Zhang, Y. (2022). Advanced techniques for performing photodynamic therapy in deep-seated tissues. Biomaterials, 291, 121875. https://doi.org/10.1016/j.biomaterials.2022.121875

Sun, W., Luo, Z., Lee, J., Kim, H., Lee, K., Tebon, P., Feng, Y., Dokmeci, M. R., Sengupta, S., & Khademhosseini, A. (2019). Organ‐on‐a‐Chip: Organ‐on‐a‐Chip for cancer and immune organs modeling (Adv. Healthcare mater. 4/2019). Advanced Healthcare Materials, 8(4). https://doi.org/10.1002/adhm.201970014

Thorat, N. D., Tofail, S. A., Von Rechenberg, B., Townley, H., Brennan, G., Silien, C., Yadav, H. M., Steffen, T., & Bauer, J. (2019). Physically stimulated nanotheranostics for next generation cancer therapy: Focus on magnetic and light stimulations. Applied Physics Reviews, 6(4). https://doi.org/10.1063/1.5049467

Wang, J., Zhao, W., Zhang, Z., Liu, X., Xie, T., Wang, L., Xue, Y., & Zhang, Y. (2024). A journey of challenges and victories: A bibliometric worldview of Nanomedicine since the 21st century. Advanced Materials, 36(15). https://doi.org/10.1002/adma.202308915

Wang, L., Liu, Y., Li, W., Jiang, X., Ji, Y., Wu, X., Xu, L., Qiu, Y., Zhao, K., Wei, T., Li, Y., Zhao, Y., & Chen, C. (2011). Selective targeting of gold Nanorods at the mitochondria of cancer cells: Implications for cancer therapy. Nano Letters, 11(2), 772-780. https://doi.org/10.1021/nl103992v

Wang, R., Huang, Z., Xiao, Y., Huang, T., & Ming, J. (2023). Photothermal therapy of copper incorporated nanomaterials for biomedicine. Biomaterials Research, 27(1). https://doi.org/10.1186/s40824-023-00461-z

Wang, X., Li, C., Wang, Y., Chen, H., Zhang, X., Luo, C., Zhou, W., Li, L., Teng, L., Yu, H., & Wang, J. (2022). Smart drug delivery systems for precise cancer therapy. Acta Pharmaceutica Sinica B, 12(11), 4098-4121. https://doi.org/10.1016/j.apsb.2022.08.013

Wong, X. Y., Sena-Torralba, A., Álvarez-Diduk, R., Muthoosamy, K., & Merkoçi, A. (2020). Nanomaterials for Nanotheranostics: Tuning their properties according to disease needs. ACS Nano, 14(3), 2585-2627. https://doi.org/10.1021/acsnano.9b08133

Wrześniewski, K., Weymann, I., Zaleski, K., Coy, E., Kempiński, M., Schönherr, H. P., ... & Tarapov, S. (2019). Quench dynamics of spin in magnetic impurity systems. https://mtpr.amu.edu.pl/former-seminars/

Wu, X., Li, Y., Wen, M., Xie, Y., Zeng, K., Liu, Y., Chen, W., & Zhao, Y. (2024). Nanocatalysts for modulating antitumor immunity: Fabrication, mechanisms and applications. Chemical Society Reviews, 53(5), 2643-2692. https://doi.org/10.1039/d3cs00673e

Zang, X., Song, J., Li, Y., & Han, Y. (2022). Targeting necroptosis as an alternative strategy in tumor treatment: From drugs to nanoparticles. Journal of Controlled Release, 349, 213-226. https://doi.org/10.1016/j.jconrel.2022.06.060

Downloads

Published

2025-03-13

How to Cite

Liaqat, A., Mohsin Saleem Ghouri, M. S., Shehzadi, R., Munir, R., Bashir, M., Rehmat, A., Bashir, M. S., Irshad, M., & Ahmed, H. (2025). Nano-Engineering for Precision Oncology Unraveling Molecular Mechanisms and Pioneering Revolutionary Cancer Therapies. Indus Journal of Bioscience Research, 3(3), 9-18. https://doi.org/10.70749/ijbr.v3i3.810