Role of Helicobacter pylori Infection and Host Genetic Polymorphisms in Gastric Cancer Susceptibility: A Systematic Review

Authors

  • Kashmala Shah Khyber Medical College, Peshawar, Pakistan.
  • Brekhna Shah Khyber Medical College, Peshawar, Pakistan.
  • Majid Shah Saidu Medical College, Swat, Pakistan.
  • Safa Shah Department of Medical Sciences and Biology, Western University, London, Ontario, Canada.

DOI:

https://doi.org/10.70749/ijbr.v3i3.855

Keywords:

Gastric Cancer, H. Pylori, Environmental Factors, Genetic Susceptibility, Cancer

Abstract

Background: Despite ongoing efforts, gastric cancer remains a leading cause of cancer-related death worldwide, with its high risk primarily attributed to Helicobacter pylori (H. pylori) infection. However, the development of gastric cancer is influenced not only by bacterial virulence but also by host genetic susceptibility. Methods: To determine the potential association between specific SNPs, such as IL-6 rs1800795, PRKAA1 rs13361707, and HULC rs7770772, and gastric cancer risk in H. pylori-infected populations, a systematic review of cohort and case-control studies was conducted. Results: In the presence of risk alleles of inflammatory cytokine genes, such as IL-6 rs1800795 and IL-10, the amplification of susceptibility to gastric carcinoma was significantly higher in H. pylori positive individuals. In East Asians, the PRKAA1 rs13361707 polymorphism had an additive effect with H. pylori infection and with CagA-positive strains. Additionally, the HULC rs7770772 polymorphism synergistically enhanced gastric cancer risk in conjunction with bacterial infection. Other SNPs, including IL-18RAP rs917997 and IL-32 rs2015620, were associated with chronic atrophic gastritis and intestinal metaplasia and were implicated in the progression of gastric cancer. A Hispanic group with H. pylori infection and gastric cancer showed a common increase in HLA-Class II polymorphisms, such as HLA-DQA101 and HLA-DQB106, which are associated with decreased H. pylori susceptibility and an increased risk of gastric cancer. Furthermore, H. pylori influences host immunity through the regulation of microRNA-mediated modifications of HLA-II expression, which manipulates the immune response and facilitates immune evasion. Conclusion: Our findings demonstrate that the pathogenesis of gastric cancer involves an intricate interplay between H. pylori infection, host genetic susceptibility, and environmental factors.

Downloads

Download data is not yet available.

References

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (n.d.). Schistosomes, Liver Flukes and Helicobacter pylori. In PubMed. International Agency for Research on Cancer. https://www.ncbi.nlm.nih.gov/books/NBK487782/

Correa, P., & Piazuelo, M. B. (2011). Helicobacter pylori Infection and Gastric Adenocarcinoma. US Gastroenterology & Hepatology Review, 7(1), 59–64. https://pubmed.ncbi.nlm.nih.gov/21857882/

Denic, M., Touati, E., & De Reuse, H. (2020). Review: Pathogenesis of Helicobacter pylori infection. Helicobacter, 25(S1). https://doi.org/10.1111/hel.12736

Soluri, M. F., Puccio, S., Giada Caredda, Paolo Edomi, D’Elios, M. M., Fabio Cianchi, Troilo, A., Santoro, C., Sblattero, D., & Peano, C. (2020). Defining the Helicobacter pylori Disease-Specific Antigenic Repertoire. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01551

Baj, J., Forma, A., Sitarz, M., Portincasa, P., Garruti, G., Krasowska, D., & Maciejewski, R. (2020). Helicobacter pylori Virulence Factors—Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells, 10(1), 27. https://doi.org/10.3390/cells10010027

Cai, M., Dai, S., Chen, W., Xia, C., Lu, L., Dai, S., Qi, J., Wang, M., Wang, M., Zhou, L., Lei, F., Zuo, T., Zeng, H., & Zhao, X. (2017). Environmental factors, seven GWAS‐identified susceptibility loci, and risk of gastric cancer and its precursors in a Chinese population. Cancer Medicine, 6(3), 708–720. https://doi.org/10.1002/cam4.1038

Usui, Y., Taniyama, Y., Endo, M., Koyanagi, Y. N., Kasugai, Y., Oze, I., Ito, H., Imoto, I., Tanaka, T., Tajika, M., Niwa, Y., Iwasaki, Y., Aoi, T., Hakozaki, N., Takata, S., Suzuki, K., Terao, C., Hatakeyama, M., Hirata, M., & Sugano, K. (2023). Helicobacter pylori, Homologous-Recombination Genes, and Gastric Cancer. New England Journal of Medicine, 388(13), 1181–1190. https://doi.org/10.1056/nejmoa2211807

Wang, L., Xiao, S., Zheng, Y., Gao, Z., & Fan, F. (2024). Impact of interaction between interleukin-6 gene polymorphism and Helicobacter pylori infection on susceptibility to gastric cancer. European Journal of Cancer Prevention: The Official Journal of the European Cancer Prevention Organisation (ECP), 33(2), 136–140. https://doi.org/10.1097/CEJ.0000000000000835

Li, M., Huang, L., Qiu, H., Fu, Q., Li, W., Yu, Q., Sun, L., Zhang, L., Hu, G., Hu, J., & Yuan, X. (2013). Helicobacter pylori infection synergizes with three inflammation-related genetic variants in the GWASs to increase risk of gastric cancer in a Chinese population. PLoS One, 8(9). https://doi.org/10.1371/journal.pone.0074976

Eom, S., Hong, S., Yim, D., Kwon, H., Kim, D., Yun, H., Song, Y., Youn, S., Hyun, T., Park, J., Kim, B. S., Kim, Y., & Kim, H. (2016). Additive interactions between PRKAA1 polymorphisms and Helicobacter pylori CagA infection associated with gastric cancer risk in Koreans. Cancer Medicine, 5(11), 3236–3335. https://doi.org/10.1002/cam4.926

Wang, B. G., Ding, H. X., Lv, Z., Xu, Q., & Yuan, Y. (2020). Interaction of HULC polymorphisms with Helicobacter pylori infection plays a strong role for the prediction of gastric cancer risk. Future Oncology (London, England), 16(26), 1997–2006. https://doi.org/10.2217/fon-2020-0228

Kim, J., Cho, Y. A., Choi, I. J., Lee, Y.-S., Kim, S. Y., Shin, A., Cho, S. J., Kook, M. C., Nam, J. H., Ryu, K. W., Lee, J. H., & Kim, Y. W. (2012). Effects of Interleukin-10 Polymorphisms, Helicobacter pylori Infection, and Smoking on the Risk of Noncardia Gastric Cancer. PLoS ONE, 7(1), e29643. https://doi.org/10.1371/journal.pone.0029643

Wang, Y. M., Li, Z. X., Tang, F. B., Zhang, Y., Zhou, T., Zhang, L., Ma, J. L., You, W. C., & Pan, K. F. (2016). Association of genetic polymorphisms of interleukins with gastric cancer and precancerous gastric lesions in a high-risk Chinese population. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 37(2), 2233–2242. https://doi.org/10.1007/s13277-015-4022-x

Xu, Q., Wu, Y.-F., Li, Y., He, C.-Y., Sun, L.-P., Liu, J.-W., & Yuan, Y. (2016). SNP-SNP interactions of three new pri-miRNAs with the target gene PGC and multidimensional analysis of H. pylori in the gastric cancer/atrophic gastritis risk in a Chinese population. Oncotarget, 7(17), 23700–23714. https://doi.org/10.18632/oncotarget.8057

Kocak, B. T., Saribas, S., Demiryas, S., Yilmaz, E., Uysal, O., Kepil, N., Demirci, M., Dınc, H. O., Akkus, S., Gülergün, R., Gareayaghi, N., Dağdeviren, H. E., Ozbey, D., Dağ, H. H., Tokman, H. B., Tasci, I., & Kocazeybek, B. (2020). Association between polymorphisms in HLA-A, HLA-B, HLA-DR, and DQ genes from gastric cancer and duodenal ulcer patients and cagL among cagA-positive Helicobacter pylori strains: The first study in a Turkish population. Infection, Genetics and Evolution, 82. https://doi.org/10.1016/j.meegid.2020.104288

Zhao, Y., Wang, J., Tanaka, T., Hosono, A., Ando, R., Soeripto, S., Ediati Triningsih, F. X., Triono, T., Sumoharjo, S., Astuti, E. Y. W., Gunawan, S., & Tokudome, S. (2012). Association between HLA-DQ genotypes and haplotypes vs Helicobacter pylori infection in an Indonesian population. Asian Pacific Journal of Cancer Prevention: APJCP, 13(4), 1247–1251. https://doi.org/10.7314/apjcp.2012.13.4.1247

Gönen, s., sari, s., kandur, y., dalgiç, b., & söylemezoğlu, o. (2017). Evaluation of human leukocyte antigen class i and ii antigens in helicobacter pylori-positive pediatric patients with active gastritis and duodenal ulcer. Arquivos de Gastroenterologia, 54(4), 297–299. https://doi.org/10.1590/s0004-2803.201700000-62

Salih, W. H. (2019). HLA-DRB1*03 And DRB1*15 Frequency In Helicobacter Pylori Superficial Gastritis. AL-Kindy College Medical Journal, 13(2), 63–68. https://doi.org/10.47723/kcmj.v13i2.97

Codolo, G., Toffoletto, M., Chemello, F., Coletta, S., Soler Teixidor, G., Battaggia, G., Munari, G., Fassan, M., Cagnin, S., & de Bernard, M. (2020). Helicobacter pylori Dampens HLA-II Expression on Macrophages via the Up-Regulation of miRNAs Targeting CIITA. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.02923

Apoorva, E., Jacob, R., Rao, D. N., & Kumar, S. (2024). Helicobacter pylori enhances HLA‐C expression in the human gastric adenocarcinoma cells AGS and can protect them from the cytotoxicity of natural killer cells. Helicobacter, 29(2). https://doi.org/10.1111/hel.13069

Saruuljavkhlan, B., Alfaray, R., Oyuntsetseg, K., Gantuya, B., Khangai, A., Renchinsengee, N., Matsumoto, T., Akada, J., Dashdorj Azzaya, Duger, D., & Yamaoka, Y. (2023). Study of Helicobacter pylori Isolated from a High-Gastric-Cancer-Risk Population: Unveiling the Comprehensive Analysis of Virulence-Associated Genes including Secretion Systems, and Genome-Wide Association Study. Cancers, 15(18), 4528–4528. https://doi.org/10.3390/cancers15184528

Kodaman, N., Pazos, A., Schneider, B. G., Piazuelo, M. B., Mera, R., Sobota, R. S., Sicinschi, L. A., Shaffer, C. L., Romero-Gallo, J., de Sablet, T., Harder, R. H., Bravo, L. E., Peek, R. M., Wilson, K. T., Cover, T. L., Williams, S. M., & Correa, P. (2014). Human and Helicobacter pylori coevolution shapes the risk of gastric disease. Proceedings of the National Academy of Sciences, 111(4), 1455–1460. https://doi.org/10.1073/pnas.1318093111

Lamb, A., & Chen, L.-F. (2013). Role of the Helicobacter pylori-Induced inflammatory response in the development of gastric cancer. Journal of Cellular Biochemistry, 114(3), 491–497. https://doi.org/10.1002/jcb.24389

Machado, A. M. D., Figueiredo, C., Seruca, R., & Rasmussen, L. J. (2010). Helicobacter pylori infection generates genetic instability in gastric cells. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1806(1), 58–65. https://doi.org/10.1016/j.bbcan.2010.01.007

Katoh, H., & Ishikawa, S. (2021). Lifestyles, genetics, and future perspectives on gastric cancer in east Asian populations. Journal of Human Genetics, 66(9), 887–899. https://doi.org/10.1038/s10038-021-00960-8

Yamaoka, Y. (2010). Mechanisms of disease: Helicobacter pylori virulence factors. Nature Reviews Gastroenterology & Hepatology, 7(11), 629–641. https://doi.org/10.1038/nrgastro.2010.154

Correa, P., & Piazuelo, M. B. (2011). The gastric precancerous cascade. Journal of Digestive Diseases, 13(1), 2–9. https://doi.org/10.1111/j.1751-2980.2011.00550.x

Downloads

Published

2025-03-19

How to Cite

Shah, K., Shah, B., Shah , M., & Shah, S. (2025). Role of Helicobacter pylori Infection and Host Genetic Polymorphisms in Gastric Cancer Susceptibility: A Systematic Review. Indus Journal of Bioscience Research, 3(3), 57-62. https://doi.org/10.70749/ijbr.v3i3.855